Device-independent Point Estimation from Finite Data

The device-independent approach to physics is one where conclusions are drawn directly from the observed correlations between measurement outcomes. In quantum information, this approach allows one to make strong statements about the properties of the underlying systems or devices solely via the observation of Bell-inequality-violating correlations. However, since one can only perform a {\em finite number} of experimental trials, statistical fluctuations necessarily accompany any estimation of these correlations. Consequently, an important gap remains between the many theoretical tools developed for the asymptotic scenario and the experimentally obtained raw data. In particular, a physical and concurrently practical way to estimate the underlying quantum distribution has so far remained elusive. Here, we show that the natural analogs of the maximum-likelihood estimation technique and the least-square-error estimation technique in the device-independent context result in point estimates of the true distribution that are physical, unique, computationally tractable and consistent. They thus serve as sound algorithmic tools allowing one to bridge the aforementioned gap. As an application, we demonstrate how such estimates of the underlying quantum distribution can be used to provide, in certain cases, trustworthy estimates of the amount of entanglement present in the measured system. In stark contrast to existing approaches to device-independent parameter estimations, our estimation does not require the prior knowledge of {\em any} Bell inequality tailored for the specific property and the specific distribution of interest.

[1]  H. Ng,et al.  Optimal error regions for quantum state estimation , 2013, 1302.4081.

[2]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[3]  Gonzalo de la Torre,et al.  Characterization of quantum correlations with local dimension constraints and its device-independent applications , 2013, 1308.3410.

[4]  S. Wolf,et al.  Non-locality of experimental qutrit pairs , 2014, 1402.5026.

[5]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[6]  Peter Grünwald,et al.  The statistical strength of nonlocality proofs , 2003, IEEE Transactions on Information Theory.

[7]  V. Scarani,et al.  More randomness from the same data , 2013, 1309.3894.

[8]  M. Murao,et al.  Precision-guaranteed quantum tomography. , 2013, Physical review letters.

[9]  Nicolas Brunner,et al.  Semi-device-independent bounds on entanglement , 2010, 1012.1513.

[10]  Jean-Daniel Bancal,et al.  Physical characterization of quantum devices from nonlocal correlations , 2013, 1307.7053.

[11]  A. Acín,et al.  Almost quantum correlations , 2014, Nature Communications.

[12]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[13]  Renato Renner,et al.  Practical and Reliable Error Bars in Quantum Tomography. , 2015, Physical review letters.

[14]  Shin-Liang Chen,et al.  Natural Framework for Device-Independent Quantification of Quantum Steerability, Measurement Incompatibility, and Self-Testing. , 2016, Physical review letters.

[15]  M. Junge,et al.  Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.

[16]  A. Falcon Physics I.1 , 2018 .

[17]  Nicolas Gisin,et al.  Family of Bell-like Inequalities as Device-Independent Witnesses for Entanglement Depth. , 2014, Physical review letters.

[18]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[19]  N. Gisin,et al.  On the inequivalence of the CH and CHSH inequalities due to finite statistics , 2016, 1610.01833.

[20]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[21]  Emanuel Knill,et al.  Efficient quantification of experimental evidence against local realism , 2013, 1303.7464.

[22]  Emanuel Knill,et al.  Asymptotically optimal data analysis for rejecting local realism , 2011 .

[23]  Nicolas Gisin,et al.  Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. , 2014, Physical review letters.

[24]  N. Gisin,et al.  Looking for symmetric Bell inequalities , 2010, 1004.4146.

[25]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[26]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[27]  C. Ross Found , 1869, The Dental register.

[28]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[29]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[30]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[31]  H. Weinfurter,et al.  Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. , 2016, Physical review letters.

[32]  G. Tóth,et al.  Evaluating convex roof entanglement measures. , 2014, Physical Review Letters.

[33]  S. Pironio,et al.  Using complete measurement statistics for optimal device-independent randomness evaluation , 2013, 1309.3930.

[34]  Stefano Pironio,et al.  Security of practical private randomness generation , 2011, 1111.6056.

[35]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[36]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[37]  Nicolas Gisin,et al.  Optimal bell tests do not require maximally entangled states. , 2005, Physical review letters.

[38]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[39]  N. Gisin,et al.  Demonstration of Quantum Nonlocality in the Presence of Measurement Dependence. , 2015, Physical review letters.

[40]  N. Gisin,et al.  A framework for the study of symmetric full-correlation Bell-like inequalities , 2012, 1201.2055.

[41]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[42]  Miguel Navascués,et al.  Bounding the Set of Finite Dimensional Quantum Correlations. , 2014, Physical review letters.

[43]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[44]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[45]  N. Gisin,et al.  Measurement dependent locality , 2015, 1510.09087.

[46]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[47]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[48]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[49]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[50]  Stefano Pironio,et al.  Device-independent witnesses of genuine multipartite entanglement. , 2011, Physical review letters.

[51]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[52]  Thomas Vidick,et al.  More nonlocality with less entanglement , 2010, 1011.5206.

[53]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[54]  Miguel Navascués,et al.  Robust and versatile black-box certification of quantum devices. , 2014, Physical review letters.

[55]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[56]  Nicolas Gisin,et al.  Quantum Nonlocality with Arbitrary Limited Detection Efficiency. , 2015, Physical review letters.

[57]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[58]  Stefano Pironio,et al.  Device-independent randomness generation from several Bell estimators , 2016, 1611.00352.

[59]  Peter Wittek,et al.  Efficient Device-Independent Entanglement Detection for Multipartite Systems , 2016, 1612.08551.

[60]  Nicolas Gisin,et al.  Exploring the Limits of Quantum Nonlocality with Entangled Photons , 2015, 1506.01649.

[61]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[62]  V. Scarani,et al.  Testing the dimension of Hilbert spaces. , 2008, Physical review letters.

[63]  Robin Blume-Kohout,et al.  When quantum tomography goes wrong: drift of quantum sources and other errors , 2013 .

[64]  Amir Beck,et al.  Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications with MATLAB , 2014, MOS-SIAM Series on Optimization.

[65]  Nicolas Gisin,et al.  Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses , 2012, 1203.0911.

[66]  C. Schwemmer,et al.  Systematic errors in current quantum state tomography tools. , 2013, Physical review letters.

[67]  Yeong-Cherng Liang,et al.  Almost-quantum correlations and their refinements in a tripartite Bell scenario , 2016, 1608.05641.

[68]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[69]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[70]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[71]  S. Massar,et al.  Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.

[72]  Paul Skrzypczyk,et al.  Quantitative relations between measurement incompatibility, quantum steering, and nonlocality , 2016, 1601.07450.