First Order Eigenvalue Perturbation Theory and the Newton Diagram

First order perturbation theory for eigenvalues of arbitrary matrices is systematically developed in all its generality with the aid of the Newton diagram, an elementary geometric construction first proposed by Isaac Newton. In its simplest form, a square matrix A with known Jordan canonical form is linearly perturbed to A(e) = A + e B for an arbitrary perturbation matrix B, and one is interested in the leading term in the e-expansion of the eigenvalues of A(e). The perturbation of singular values and of generalized eigenvalues is also covered.

[1]  Branko Najman Remarks on the perturbation of analytic matrix functions , 1986 .

[2]  BRANKO NAJMAN The Asymptotic Behavior of the Eigenvalues of a Singularly Perturbed Linear Pencil , 1998, SIAM J. Matrix Anal. Appl..

[3]  Heinz Langer,et al.  Leading coefficients of the eigenvalues of perturbed analytic matrix functions , 1993 .

[4]  H. Hilton Plane algebraic curves , 1921 .

[5]  R. J. Walker Algebraic curves , 1950 .

[6]  Morris Newman,et al.  The Smith normal form , 1997 .

[7]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung , 1937 .

[8]  V. Puiseux Recherches sur les fonctions algébriques. , 1850 .

[9]  D. T. Whiteside,et al.  The mathematical works of Isaac Newton , 1964 .

[10]  Eric J. F. Primrose Plane algebraic curves , 1956 .

[11]  F. Rellich Störungstheorie der Spektralzerlegung , 1939 .

[12]  Heinz Langer,et al.  Remarks on the perturbation of analytic matrix functions III , 1992 .

[13]  L. Rayleigh,et al.  The theory of sound , 1894 .

[14]  K. Friedrichs On the perturbation of continuous spectra , 1948 .

[15]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung. IV , 1940 .

[16]  H. Baumgärtel Analytic perturbation theory for matrices and operators , 1985 .

[17]  G. Stewart A note on the perturbation of singular values , 1979 .

[18]  Alan Edelman,et al.  Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .

[19]  H. Langer,et al.  Remarks on the perturbation of analytic matrix functions II , 1986 .

[20]  V. Lidskii Perturbation theory of non-conjugate operators , 1966 .

[21]  K. Veselic On linear vibrational systems with one dimensional damping II , 1990 .

[22]  Tosio Kato Perturbation theory for linear operators , 1966 .

[23]  Brooke Hindle,et al.  The Correspondence of Isaac Newton , 1961 .

[24]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[25]  M. Overton,et al.  On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..

[26]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[27]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[28]  R. Phillips,et al.  Perturbation theory for semi-groups of linear operators , 1953 .

[29]  B. Nagy Perturbations des transformations autoadjointes dans l'espace de Hilbert , 1946 .

[30]  H. Langer,et al.  Perturbation of the Eigenvalues of Quadratic Matrix Polynomials , 1992, SIAM J. Matrix Anal. Appl..

[31]  P. Lancaster,et al.  Perturbation of analytic hermitian matrix functions , 1985 .

[32]  M. M. Vaĭnberg,et al.  Theory of branching of solutions of non-linear equations , 1974 .

[33]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[34]  M. Vishik,et al.  THE SOLUTION OF SOME PERTURBATION PROBLEMS FOR MATRICES AND SELFADJOINT OR NON-SELFADJOINT DIFFERENTIAL EQUATIONS I , 1960 .