General decay of solutions of a viscoelastic equation

Abstract In this paper we consider the following viscoelastic equation: u t t − Δ u + ∫ 0 t g ( t − τ ) Δ u ( τ ) d τ = 0 , in a bounded domain, and establish a general decay result which is not necessarily of exponential or polynomial type. This work generalizes and improves earlier results in the literature.

[1]  Salim A. Messaoudi,et al.  Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation , 2006 .

[2]  Jaime E. Muñoz Rivera,et al.  On the decay of the energy for systems with memory and indefinite dissipation , 2006, Asymptot. Anal..

[3]  Salim A. Messaoudi,et al.  Blow up and global existence in a nonlinear viscoelastic wave equation , 2003 .

[4]  Michael Renardy,et al.  Mathematical problems in viscoelasticity , 1987 .

[5]  Walter Noll,et al.  Foundations of Linear Viscoelasticity , 1961 .

[6]  Marcelo M. Cavalcanti,et al.  Existence and uniform decay for a non‐linear viscoelastic equation with strong damping , 2001 .

[7]  A. Morro,et al.  Mathematical problems in linear viscoelasticity , 1987 .

[8]  On the type ofCo-semigroup associated with the abstract linear viscoelastic system , 1996 .

[9]  Asymptotic stability of semigroups associated with linear weak dissipative systems with memory , 2007 .

[10]  Bernard D. Coleman,et al.  On the general theory of fading memory , 1968 .

[11]  C. Dafermos Asymptotic stability in viscoelasticity , 1970 .

[12]  H. P. Oquendo,et al.  Exponential Stability to a Contact Problem of Partially Viscoelastic Materials , 2001 .

[13]  Hua Su,et al.  POSITIVE SOLUTIONS OF FOUR-POINT BOUNDARY-VALUE PROBLEMS FOR FOUR-ORDER p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES , 2006 .

[14]  Salim A. Messaoudi,et al.  Existence and decay of solutions of a viscoelastic equation with a nonlinear source , 2006 .

[15]  Yoshihiro Shibata,et al.  Global existence and exponential stability of small solutions to nonlinear viscoelasticity , 1992 .

[16]  Marcelo M. Cavalcanti,et al.  Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping , 2001, Differential and Integral Equations.

[17]  Jaime E. Muñoz Rivera,et al.  Asymptotic behaviour in linear viscoelasticity , 1994 .

[18]  Shun-Tang Wu BLOW-UP OF SOLUTIONS FOR AN INTEGRO-DIFFERENTIAL EQUATION WITH A NONLINEAR SOURCE , 2006 .

[19]  S. Messaoudi,et al.  Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. , 2004 .

[20]  M. G. Naso,et al.  Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory , 2003 .

[21]  Marcelo Moreira Cavalcanti,et al.  Frictional versus Viscoelastic Damping in a Semilinear Wave Equation , 2003, SIAM J. Control. Optim..

[22]  J. M. Rivera,et al.  Uniform rates of decay in nonlinear viscoelasticity for polynomial decaying kernels , 1996 .

[23]  J. M. Muñoz Rivera,et al.  Decay rates of solutions of an anisotropic inhomogeneousn-dimensional viscoelastic equation with polynomially decaying kernels , 1996 .

[24]  J. A. Soriano,et al.  Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping , 2002 .

[25]  Constantine M. Dafermos,et al.  An abstract Volterra equation with applications to linear viscoelasticity , 1970 .

[26]  Pedro Gamboa,et al.  EXISTENCE OF SOLUTIONS TO THE ROSENAU AND BENJAMIN-BONA-MAHONY EQUATION IN DOMAINS WITH MOVING BOUNDARY , 2004 .

[27]  Nasser-eddine Tatar,et al.  Global existence and uniform stability of solutions for a quasilinear viscoelastic problem , 2007 .

[28]  Zhuangyi Liu,et al.  Semigroups Associated with Dissipative Systems , 1999 .

[29]  J. Rivera,et al.  Decay rates for viscoelastic plates with memory , 1996 .

[30]  Pablo Amster,et al.  Existence of Solutions for Elliptic Systems with Critical Sobolev Exponent , 2002 .

[31]  Nasser-eddine Tatar,et al.  Exponential and polynomial decay for a quasilinear viscoelastic equation , 2008 .

[32]  Jaime E. Mu nmacr,et al.  Asymptotic behaviour of the energy in partially viscoelastic materials , 2001 .

[33]  G. Dassios,et al.  Equipartition of energy in linearized 3-D viscoelasticity , 1990 .