A New Method for Undecidablity Proofs of First Order Theories

Abstract We claim that the reduction of Post's Correspondence Problem to the decision problem of a theory provides a useful tool for proving undecidability of first order theories given by some interpretation. The goal of this paper is to define a framework for such reduction proofs. The method proposed is illustrated by proving the undecidability of the theory of a term algebra modulo the axioms of associativity and commutativity and of the theory of a partial lexicographic path ordering.

[1]  B. Courcelle Fundamental properties of infinite trees , 1983 .

[2]  Yuri Gurevich,et al.  Logic in Computer Science , 1993, Current Trends in Theoretical Computer Science.

[3]  W. V. Quine,et al.  Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.

[4]  Hubert Comon-Lundh,et al.  Equational Problems and Disunification , 1989, J. Symb. Comput..

[5]  Jörg H. Siekmann Unification Theory , 1989, J. Symb. Comput..

[6]  Jean-Pierre Jouannaud,et al.  Satisfiability of Systems of Ordinal Notations with the Subterm Property is Decidable , 1991, ICALP.

[7]  Alfred Tarski I: A General Method in Proofs of Undecidability , 1953 .

[8]  Franz Baader,et al.  Unification in the Union of Disjoint Equational Theories: Combining Decision Procedures , 1992, CADE.

[9]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[10]  Donald F. Stanat,et al.  Formal languages and power series , 1971, STOC.

[11]  Hubert Comon,et al.  Disunification: A Survey. , 1991 .

[12]  Mark E. Stickel,et al.  A Unification Algorithm for Associative-Commutative Functions , 1981, JACM.

[13]  N. A C H U M D E R S H O W I T Z Termination of Rewriting' , 2022 .

[14]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[15]  Alfred Tarski,et al.  II: Undecidability and Essential Undecidability in Arithmetic , 1953 .

[16]  François Fages Associative-Commutative Unification , 1987, J. Symb. Comput..

[17]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[19]  Hubert Comon-Lundh,et al.  Solving Symbolic Ordering Constraints , 1990, Int. J. Found. Comput. Sci..

[20]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[21]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1 , 1985, EATCS Monographs on Theoretical Computer Science.

[22]  Hubert Comon Unification et disunification : théorie et applications , 1988 .

[23]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[24]  Sauro Tulipani Decidability of the Existential Theory of Infinite Terms with Subterm Relation , 1994, Inf. Comput..

[25]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[26]  Hans-Jürgen Bürckert,et al.  On Equational Theories, Unification, and (Un)Decidability , 1989, J. Symb. Comput..

[27]  Gillier,et al.  Logic for Computer Science , 1986 .

[28]  K. N. Venkataraman,et al.  Decidability of the purely existential fragment of the theory of term algebras , 1987, JACM.