Perovskite Sr1−xBaxW1−yTay(O,N)3: synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light

[1]  K. Domen,et al.  Highly Active GaN-Stabilized Ta3 N5 Thin-Film Photoanode for Solar Water Oxidation. , 2017, Angewandte Chemie.

[2]  K. Domen,et al.  Two-step synthesis and visible-light-driven photocatalytic water oxidation activity of AW(O,N)3 (A = Sr, La, Pr, Nd and Eu) perovskites , 2016 .

[3]  G. Xu,et al.  Visible-Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO2-WO3 Hybrid Nanorods. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[4]  K. Takanabe,et al.  Tantalum nitride for photocatalytic water splitting: concept and applications , 2016, Materials for Renewable and Sustainable Energy.

[5]  Peng Wang,et al.  Enhanced Water‐Splitting Performance of Perovskite SrTaO2N Photoanode Film through Ameliorating Interparticle Charge Transport , 2016 .

[6]  K. Domen,et al.  Photocatalyst Sheets Composed of Particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-Scheme Water Splitting under Visible Light , 2016 .

[7]  A. Gurlo,et al.  The contrasting effect of the Ta/Nb ratio in (111)-layered B-site deficient hexagonal perovskite Ba5Nb4-xTaxO15 crystals on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives. , 2016, Dalton transactions.

[8]  K. Domen,et al.  Amount of tungsten dopant influencing the photocatalytic water oxidation activity of LaTiO2N crystals grown directly by an NH3-assisted flux method , 2016 .

[9]  M. Bonn,et al.  Enhanced Kinetics of Hole Transfer and Electrocatalysis during Photocatalytic Oxygen Evolution by Cocatalyst Tuning , 2016 .

[10]  K. Domen,et al.  Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. , 2015, Chemical communications.

[11]  Jian Zhou,et al.  Realization of a reversible switching in TaO2 polymorphs via Peierls distortion for resistance random access memory , 2015, 1501.06632.

[12]  M. Haddouch,et al.  Synthesis, X-ray diffraction, Raman spectroscopy and Electronic structure studies of (Ba1-xSrx)WO4 ceramics , 2015 .

[13]  Hongyuan Wei,et al.  Strontium adsorption on tantalum-doped hexagonal tungsten oxide. , 2014, Journal of hazardous materials.

[14]  B. Ohtani Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. , 2014, Physical chemistry chemical physics : PCCP.

[15]  R. Savinell,et al.  Encyclopedia of Applied Electrochemistry , 2014 .

[16]  K. Domen,et al.  Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm , 2013 .

[17]  A. Gurlo,et al.  Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors , 2013 .

[18]  M. Yashima,et al.  Crystal Structure, Optical Properties, and Electronic Structure of Calcium Strontium Tungsten Oxynitrides CaxSr1–xWO2N , 2013 .

[19]  Kazunari Domen,et al.  Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. , 2013, Journal of the American Chemical Society.

[20]  K. Domen,et al.  Oxidation of water under visible-light irradiation over modified BaTaO2N photocatalysts promoted by tungsten species. , 2013, Angewandte Chemie.

[21]  K. Maeda (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. , 2013, Physical chemistry chemical physics : PCCP.

[22]  S. K. Rout,et al.  Structural, optical and microwave dielectric properties of Ba1−xSrxWO4 ceramics prepared by solid state reaction route , 2013 .

[23]  R. Ahuja,et al.  Layered Perovskite Sr2Ta2O7 for Visible Light Photocatalysis: A First Principles Study , 2013 .

[24]  H. Idriss,et al.  Photoreaction of Au/TiO2 for hydrogen production from renewables: a review on the synergistic effect between anatase and rutile phases of TiO2 , 2012, Materials for Renewable and Sustainable Energy.

[25]  M. Grätzel,et al.  Structural and photocatalytic properties of perovskite-type (La,Ca)Ti(O,N)3 prepared from A-site deficient precursors , 2012 .

[26]  K. Domen,et al.  Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. , 2012, Journal of the American Chemical Society.

[27]  K. Domen,et al.  SrNbO2N as a Water‐Splitting Photoanode with a Wide Visible‐Light Absorption Band. , 2011 .

[28]  Kai Cui,et al.  Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. , 2011, Nano letters.

[29]  Zhimin Liu,et al.  electrochromic properties of n-doped tungsten oxide thin films prepared by reactive dc-pulsed sputtering , 2011 .

[30]  V. Borisenko,et al.  Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3 , 2010 .

[31]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[32]  M. Sunkara,et al.  WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production , 2009 .

[33]  Kinam Kim,et al.  Photocatalytic activities and structural changes of barium-doped strontium tantalate (第6回資源リサイクル・材料科学に関する日韓国際シンポジウム特集号) , 2009 .

[34]  K. Domen,et al.  Photocatalytic Overall Water Splitting under Visible Light Using ATaO2N (A: Ca, Sr, Ba) and WO3 in a IO3‐/I‐ Shuttle Redox Mediated System. , 2009 .

[35]  J. Fierro,et al.  Water splitting on semiconductor catalysts under visible-light irradiation. , 2009, ChemSusChem.

[36]  Yuki Masuda,et al.  Relationship between anion and cation nonstoichiometries and valence state of titanium in perovskite-type oxynitrides LaTiO2N , 2009 .

[37]  Richard Dronskowski,et al.  First‐principles and molecular‐dynamics study of structure and bonding in perovskite‐type oxynitrides ABO2N (A = Ca, Sr, Ba; B = Ta, Nb) , 2008, J. Comput. Chem..

[38]  R. Nakano,et al.  Electrochromism and Electronic Structures of Nitrogen Doped Tungsten Oxide Thin Films Prepared by RF Reactive Sputtering , 2008 .

[39]  D. Errandonea,et al.  Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius , 2008, 0807.2115.

[40]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[41]  Shashibhushan B. Mahadik,et al.  Supercapacitive cobalt oxide (Co 3O 4) thin films by spray pyrolysis , 2006 .

[42]  Jinhua Ye,et al.  Surface modification and photocatalytic activity of distorted pyrochlore-type Bi2M(M=In, Ga and Fe)TaO7 photocatalysts , 2005 .

[43]  S. Ikeda,et al.  Overall Water Splitting on Tungsten-Based Photocatalysts with Defect Pyrochlore Structure , 2004 .

[44]  C. Tai,et al.  Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A: Ba, Sr, Ca; M: Ta, Nb). , 2004 .

[45]  Y. Bando,et al.  Synthesis of tungsten oxide nanowires , 2003 .

[46]  K. Domen,et al.  An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda < or = 500 nm). , 2002, Chemical communications.

[47]  Kuiper,et al.  Electronic structure of CoO, Li-doped CoO, and LiCoO2. , 1991, Physical review. B, Condensed matter.

[48]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[49]  D. Ollis,et al.  Is photocatalysis catalytic , 1980 .

[50]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .