GRB 061121: Broadband Spectral Evolution through the Prompt and Afterglow Phases of a Bright Burst

Swift triggered on a precursor to the main burst of GRB 061121 (z = 1.314), allowing observations to be made from the optical to gamma-ray bands. Many other telescopes, including Konus-Wind, XMM-Newton, ROTSE, and the Faulkes Telescope North, also observed the burst. The gamma-ray, X-ray, and UV/optical emission all showed a peak ~75 s after the trigger, although the optical and X-ray afterglow components also appear early on, before or during the main peak. Spectral evolution was seen throughout the burst, with the prompt emission showing a clear positive correlation between brightness and hardness. The SED of the prompt emission, stretching from 1 eV up to 1 MeV, is very flat, with a peak in the flux density at ~ 1 keV. The optical to X-ray spectra at this time are better fitted by a broken, rather than single, power law, similar to previous results for X-ray flares. The SED shows spectral hardening as the afterglow evolves with time. This behavior might be a symptom of self-Comptonization, although circumstellar densities similar to those found in the cores of molecular clouds would be required. The afterglow also decays too slowly to be accounted for by the standard models. Although the precursor and main emission show different spectral lags, both are consistent with the lag-luminosity correlation for long bursts. GRB 061121 is the instantaneously brightest long burst yet detected by Swift. Using a combination of Swift and Konus-Wind data, we estimate an isotropic energy of 2.8 × 1053 ergs over 1 keV-10 MeV in the GRB rest frame. A probable jet break is detected at ~2 × 105 s, leading to an estimate of ~10 51 ergs for the beaming-corrected gamma-ray energy.

T. Sakamoto | E. Rol | J. P. Osborne | K. L. Page | C. Guidorzi | A. Melandri | P. T. O'Brien | D. N. Burrows | A. P. Beardmore | N. Gehrels | O. Godet | R. Willingale | University of Michigan | P. Schady | Pennsylvania State University | S. D. Barthelmy | R.L.C. Starling | MIT | Liverpool John Moores University | M. Ehle | J. P. Norris | B. E. Schaefer | M. De Pasquale | M. R. Goad | P. Romano | E. Troja | S. A. Yost | F. E. Marshall | NASAGSFC | V. Pal'shin | M. Stamatikos | University of Nevada | S. Barthelmy | E. Rol | P. Schady | R. Starling | M. Stamatikos | P. Evans | J. Osborne | A. Melandri | E. Troja | B. Schaefer | R. Willingale | M. Goad | G. Ricker | C. Guidorzi | K. Page | A. Beardmore | H. Ziaeepour | Louisiana State University | P. Romano | O. Godet | M. Page | F. Yuan | M. Ehle | V. Pal'shin | M. Ulanov | G. Cusumano | S. Yost | D. Burrows | N. Gehrels | C. Mundell | P. A. Evans | B. Zhang | S. Golenetskii | G. Ricker | G. Cusumano | M. J. Page | M.Ulanov | F. Yuan | H. Ziaeepour University of Leicester | University of Denver | Stanford University | Ioffe Physico-Technical Institute | Osservatorio Astronomico di Brera | Universita' di Milano-Bicocca | MSSL | INAF-IASF | Sezione di Palermo | XMM-Newton Science Operations Centre | C. Mundell | Fiona Marshall | J. P. Norris | M. De Pasquale | S. Golenetskii | B. Zhang | P. O’brien | T. Sakamoto | B. Zhang | B. Zhang | B. Zhang | P. O’Brien | J. P. Norris | P. Evans | P. Romano | J. Norris | P. O'Brien | P. Evans

[1]  D. M. Palmer,et al.  BATSE observations of gamma-ray burst spectra. 2: Peak energy evolution in bright, long bursts , 1994 .

[2]  C. Kouveliotou,et al.  The Fourth BATSE Gamma-Ray Burst Catalog (Revised) , 1999, astro-ph/9903205.

[3]  J. P. Osborne,et al.  Testing the curvature effect and internal origin of gamma-ray burst prompt emissions and X-ray flares with Swift data , 2006 .

[4]  B. Gendre,et al.  Detection of a very bright optical flare from a gamma-ray burst at redshift 6.29 , 2006 .

[5]  Sumin Tang,et al.  Time lag between prompt optical emission and γ-rays in GRBs , 2006, astro-ph/0607004.

[6]  A. Kumar,et al.  The slow decay of some radio afterglows – a puzzle for the simplest γ-ray burst fireball model , 2003 .

[7]  T. Sakamoto,et al.  A link between prompt optical and prompt γ-ray emission in γ-ray bursts , 2005, Nature.

[8]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[9]  Nicole M. Lloyd-Ronning,et al.  Synchrotron Radiation as the Source of Gamma-Ray Burst Spectra , 2000 .

[10]  A. Loeb,et al.  Emission Spectra from Internal Shocks in Gamma-Ray Burst Sources , 1997, astro-ph/9710219.

[11]  J. Herder,et al.  The Reflection Grating Spectrometer on-board XMM-Newton: Status of the Calibrations , 2002 .

[12]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[13]  Felix Ryde,et al.  To appear in ApJ Preprint typeset using L ATEX style emulateapj v. 04/03/99 ON THE HARDNESS-INTENSITY CORRELATION IN GAMMA-RAY BURST PULSES , 2000 .

[14]  S. R. Kulkarni,et al.  BEAMING IN GAMMA-RAY BURSTS: EVIDENCE FOR A STANDARD ENERGY RESERVOIR , 2001 .

[15]  E. O. Ofek,et al.  Multiwavelength Observations of GRB 050820A: An Exceptionally Energetic Event Followed from Start to Finish , 2006, astro-ph/0608183.

[16]  S. B. Pandey,et al.  Extensive multiband study of the X-ray rich GRB 050408 - A likely off-axis event with an intense energy injection , 2007 .

[17]  G. Tagliaferri,et al.  A Metal-rich Molecular Cloud Surrounds GRB 050904 at Redshift 6.3 , 2006, astro-ph/0611305.

[18]  D. Lazzati,et al.  Gamma-ray burst jet dynamics and their interaction with the progenitor star , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  A. Panaitescu,et al.  A unified picture for the γ‐ray and prompt optical emissions of GRB 990123 , 2006, astro-ph/0612504.

[20]  J. Hakkila,et al.  Quiescent Burst Evidence for Two Distinct Gamma-Ray Burst Emission Components , 2004, astro-ph/0403360.

[21]  Alain Klotz,et al.  Continuous optical monitoring during the prompt emission of GRB 060111B , 2006 .

[22]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[23]  P. Giommi,et al.  Swift observations of the X-ray-bright GRB 050315 , 2005 .

[24]  L. A. Antonelli,et al.  Evidence for intrinsic absorption in the Swift X-ray afterglows , 2005, astro-ph/0511750.

[25]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[26]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2004 .

[27]  Nakamura Multiple Sub-Jet Model of Gamma-Ray Bursts and Possible Origin of X-Ray Precursors and Postcursors. , 2000, The Astrophysical journal.

[28]  Gerald J. Fishman,et al.  Attributes of Pulses in Long Bright Gamma-Ray Bursts , 1996 .

[29]  N. Gehrels,et al.  Analysis of the X‐ray emission of nine Swift afterglows , 2006 .

[30]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[31]  S. Djorgovski,et al.  The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.

[32]  B. Draine,et al.  Dust Sublimation by Gamma-ray Bursts and Its Implications , 1999, astro-ph/9909020.

[33]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[34]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.

[35]  M. J. Page,et al.  Dust and gas in the local environments of gamma-ray bursts , 2007 .

[36]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[37]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[38]  Richard M. Ambrosi,et al.  Readout modes and automated operation of the Swift X-ray Telescope , 2003, SPIE Optics + Photonics.

[39]  Y. Z. Fan,et al.  Late internal‐shock model for bright X‐ray flares in gamma‐ray burst afterglows and GRB 011121 , 2005 .

[40]  D. Burrows,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[41]  Charles D. Dermer Curvature Effects in Gamma-Ray Burst Colliding Shells , 2004 .

[42]  A. Kumar,et al.  Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media , 2000, astro-ph/0003246.

[43]  P. Mészáros,et al.  Spectral properties of blast-wave models of gamma-ray burst sources , 1993, astro-ph/9311071.

[44]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[45]  A. MacFadyen,et al.  Precursors and e ± pair loading from erupting fireballs , 2001, astro-ph/0111342.

[46]  S. Barthelmy,et al.  An infrared flash contemporaneous with the γ-rays of GRB 041219a , 2005, Nature.

[47]  D. Lazzati Precursor activity in bright, long BATSE gamma-ray bursts , 2004, astro-ph/0411753.

[48]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[49]  A. Pe’er,et al.  Synchrotron Emission in Small-Scale Magnetic Fields as a Possible Explanation for Prompt Emission Spectra of Gamma-Ray Bursts , 2006, astro-ph/0605641.

[50]  C. Guidorzi,et al.  The variable X-ray light curve of GRB 050713A: the case of refreshed shocks , 2007 .

[51]  Re'em Sari,et al.  On the Synchrotron Self-Compton Emission from Relativistic Shocks and Its Implications for Gamma-Ray Burst Afterglows , 2000, astro-ph/0005253.

[52]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[53]  M. Rees,et al.  GRB 990123: reverse and internal shock flashes and late afterglow behaviour , 1999 .

[54]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[55]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[56]  S. R. Kulkarni,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003 .

[57]  Bing Zhang,et al.  An Analysis of Gamma-Ray Burst Spectral Break Models , 2002 .

[58]  Sergio Campana,et al.  Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data , 2006 .

[59]  M. Feroci,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[60]  P. Giommi,et al.  Panchromatic study of GRB 060124: From precursor to afterglow , 2006, astro-ph/0602497.

[61]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[62]  Jerry T. Bonnell,et al.  Short Gamma-Ray Bursts with Extended Emission , 2006 .

[63]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[64]  A. Mészáros Dynamical Evolution, Light Curves, and Spectra of Spherical and Collimated Gamma-Ray Burst Remnants , 1998, astro-ph/9806016.

[65]  M. J. Rees,et al.  Dissipative photosphere models of gamma-ray bursts and X-ray flashes , 2005 .

[66]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[67]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[68]  Jay P. Norris Implications of the Lag-Luminosity Relationship for Unified Gamma-Ray Burst Paradigms , 2002 .

[69]  Davide Lazzati,et al.  Constraints on the emission mechanisms of gamma‐ray bursts , 1999, astro-ph/9912461.

[70]  M. Medvedev Theory of “Jitter” Radiation from Small-Scale Random Magnetic Fields and Prompt Emission from Gamma-Ray Burst Shocks , 2000, astro-ph/0001314.

[71]  E. Waxman,et al.  Collapsar Uncorking and Jet Eruption in Gamma-Ray Bursts , 2002, astro-ph/0206392.

[72]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[73]  M. Capalbi,et al.  Swift panchromatic observations of the bright gamma-ray burst GRB 050525a , 2005 .

[74]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[75]  T. Sakamoto,et al.  Energy input and response from prompt and early optical afterglow emission in γ-ray bursts , 2006, Nature.

[76]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[77]  P. Giommi,et al.  GRB 050117: Simultaneous Gamma-Ray and X-Ray Observations with the Swift Satellite , 2005, astro-ph/0510008.

[78]  J. P. Norris,et al.  Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts , 1999, astro-ph/9903233.

[79]  W. Priedhorsky,et al.  Prevalent properties of gamma-ray burst variability , 1993 .

[80]  Gamma-Ray Burst Peak Duration as a Function of Energy , 1995, astro-ph/9504075.

[81]  E. Rol,et al.  The remarkable afterglow of GRB 061007: Implications for optical flashes and GRB fireballs , 2006 .

[82]  R. L. Aptekar,et al.  Correlation between luminosity and temperature in γ-ray burst sources , 1983, Nature.

[83]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[84]  Martin J. Rees,et al.  Peak Energy Clustering and Efficiency in Compact Objects , 2005 .

[85]  A. Miyazaki,et al.  Properties of dense molecular clouds in the galactic center region , 1999 .

[86]  P. Gensheimer,et al.  Dense Cores in the Orion Molecular Cloud , 1999 .

[87]  P. Giommi,et al.  The Early X-Ray Emission from GRBs , 2006 .

[88]  Blair D. Savage,et al.  An IUE survey of interstellar H I Ly alpha absorption. 2: Interpretations , 1994 .

[89]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[90]  K. Nomoto,et al.  Precursors and Main Bursts of Gamma-Ray Bursts in a Hypernova Scenario , 2005, astro-ph/0509750.

[91]  M. Rees,et al.  Events in the life of a cocoon surrounding a light, collapsar jet , 2002, astro-ph/0205108.