A method for determining a stochastic transition
暂无分享,去创建一个
[1] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .
[2] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[3] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[4] A. Bakst,et al. The Second Scientific American Book of Mathematical Puzzles and Diversions. , 1962 .
[5] S. Lefschetz. Contributions to the theory of nonlinear oscillations , 1950 .
[6] K. Whiteman. Invariants and stability in classical mechanics , 1977 .
[7] N. Balazs,et al. Fundamental Problems in Statistical Mechanics , 1962 .
[8] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[9] I. Percival. A variational principle for invariant tori of fixed frequency , 1979 .
[10] J. M. Greene. Two‐Dimensional Measure‐Preserving Mappings , 1968 .
[11] Joseph Ford,et al. On the Stability of Periodic Orbits for Nonlinear Oscillator Systems in Regions Exhibiting Stochastic Behavior , 1972 .
[12] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[13] J. Danby. The evolution of periodic orbits close to heteroclinic points , 1973 .
[14] Antonio Giorgilli,et al. On the reliability of numerical studies of stochasticity I: Existence of time averages , 1978 .