A method for determining a stochastic transition

A number of problems in physics can be reduced to the study of a measure‐preserving mapping of a plane onto itself. One example is a Hamiltonian system with two degrees of freedom, i.e., two coupled nonlinear oscillators. These are among the simplest deterministic systems that can have chaotic solutions. According to a theorem of Kolmogorov, Arnol’d, and Moser, these systems may also have more ordered orbits lying on curves that divide the plane. The existence of each of these orbit types depends sensitively on both the parameters of the problem and on the initial conditions. The problem addressed in this paper is that of finding when given KAM orbits exist. The guiding hypothesis is that the disappearance of a KAM surface is associated with a sudden change from stability to instability of nearby periodic orbits. The relation between KAM surfaces and periodic orbits has been explored extensively here by the numerical computation of a particular mapping. An important part of this procedure is the introduct...