The depth dependent hardness of bicrystals with dislocation transmission through grain boundaries: A theoretical model

[1]  T. Bieler,et al.  Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling , 2016 .

[2]  S. Kalidindi,et al.  Studies of grain boundary regions in deformed polycrystalline aluminum using spherical nanoindentation , 2016 .

[3]  George Z. Voyiadjis,et al.  Role of grain boundary on the sources of size effects , 2016 .

[4]  G. Voyiadjis,et al.  Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal , 2016 .

[5]  A. Hunter,et al.  A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces , 2016 .

[6]  George Z. Voyiadjis,et al.  Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation , 2016 .

[7]  I. Beyerlein,et al.  Interface-dominant multilayers fabricated by severe plastic deformation: Stability under extreme conditions , 2015 .

[8]  A. McBride,et al.  Review on slip transmission criteria in experiments and crystal plasticity models , 2015, Journal of Materials Science.

[9]  D. Raabe,et al.  A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations , 2015 .

[10]  G. Voyiadjis,et al.  Large scale atomistic simulation of size effects during nanoindentation: Dislocation length and hardness , 2015 .

[11]  G. Voyiadjis,et al.  The mechanical behavior during nanoindentation near the grain boundary in a bicrystal FCC metal , 2015 .

[12]  G. Voyiadjis,et al.  Effect of boundary conditions on the MD simulation of nanoindentation , 2014 .

[13]  S. Zaefferer,et al.  Theory and application of electron channelling contrast imaging under controlled diffraction conditions , 2014 .

[14]  T. Bieler,et al.  Grain boundaries and interfaces in slip transfer , 2014 .

[15]  I. M. Robertson,et al.  Dislocation interactions with grain boundaries , 2014 .

[16]  M. Sangid,et al.  Insights on slip transmission at grain boundaries from atomistic simulations , 2014 .

[17]  S. Kalidindi,et al.  Mechanical characterization of grain boundaries using nanoindentation , 2014 .

[18]  I. Özdemir,et al.  Modeling of dislocation–grain boundary interactions in a strain gradient crystal plasticity framework , 2014 .

[19]  I. M. Robertson,et al.  Strain localization at dislocation channel–grain boundary intersections in irradiated stainless steel , 2014 .

[20]  P. Lejček,et al.  Local plastic deformation in the vicinity of grain boundaries in Fe–3 mass% Si alloy bicrystals and tricrystal , 2014, Journal of Materials Science.

[21]  J. Kysar,et al.  Geometrically necessary dislocation density measurements associated with different angles of indentations , 2014 .

[22]  I. M. Robertson,et al.  Influence of irradiation damage on slip transfer across grain boundaries , 2014 .

[23]  H. Maier,et al.  Slip transmission in bcc FeCr polycrystal , 2013 .

[24]  Hyunchul Park,et al.  Effect of grain size on the indentation hardness for polycrystalline materials by the modified strain gradient theory , 2013 .

[25]  Lumeng Wang,et al.  Effect of the ∑5(310)/[001]θ = 53.1° grain boundary on the incipient yield of bicrystal copper: A quasicontinuum simulation and nanoindentation experiment , 2013 .

[26]  Ian M. Robertson,et al.  Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel , 2012 .

[27]  Zengsheng Ma,et al.  On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects , 2012 .

[28]  D. Farkas,et al.  Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation , 2012 .

[29]  John Lambros,et al.  Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X , 2012 .

[30]  Huseyin Sehitoglu,et al.  Energetics of residual dislocations associated with slip-twin and slip-GBs interactions , 2012 .

[31]  George Z. Voyiadjis,et al.  Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals , 2012 .

[32]  William A. Curtin,et al.  Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on Σ3, Σ9 and Σ11 tilt boundaries in Al , 2011 .

[33]  B. Guo,et al.  Experimental investigation of distance effects between indenter and grain boundary on nanoindentation of Cu bicrystal , 2011 .

[34]  Huseyin Sehitoglu,et al.  Energy of slip transmission and nucleation at grain boundaries , 2011 .

[35]  W. Lee,et al.  Simulation of micro-indentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity , 2010 .

[36]  P. Gumbsch,et al.  Dislocation―grain boundary interaction in 〈111〉 textured thin metal films , 2010 .

[37]  Minsheng Huang,et al.  Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect , 2009 .

[38]  Dierk Raabe,et al.  The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals , 2009 .

[39]  A. Wilkinson,et al.  Nanoindentation study of slip transfer phenomenon at grain boundaries , 2009 .

[40]  X. An,et al.  Evolution of initial grain boundaries and shear bands in Cu bicrystals during one-pass equal-channel angular pressing , 2009 .

[41]  E. Rabkin,et al.  Nanohardness of molybdenum in the vicinity of grain boundaries and triple junctions , 2008 .

[42]  William A. Curtin,et al.  Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al , 2007 .

[43]  K. Aifantis,et al.  Modeling dislocation : grain boundary interactions through gradient plasticity and nanoindentation , 2007 .

[44]  D. Farkas,et al.  Interaction of lattice dislocations with a grain boundary during nanoindentation simulation , 2007 .

[45]  J. Hosson,et al.  Interfaces within strain gradient plasticity: Theory and experiments , 2006 .

[46]  G. Pharr,et al.  The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity , 2006 .

[47]  Dierk Raabe,et al.  On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations , 2006 .

[48]  William A. Curtin,et al.  Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in Al , 2006 .

[49]  J. Hosson,et al.  Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals , 2005 .

[50]  A. Minor,et al.  Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope , 2004 .

[51]  W. Nix,et al.  Indentation size effect in MgO , 2004 .

[52]  A. Ngan,et al.  Indentation strain burst phenomenon induced by grain boundaries in niobium , 2004 .

[53]  G. Voyiadjis,et al.  Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments , 2004 .

[54]  A. Ngan,et al.  Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni_3Al using nanoindentation , 2004 .

[55]  Maurice de Koning,et al.  Modelling grain-boundary resistance in intergranular dislocation slip transmission , 2002 .

[56]  Subra Suresh,et al.  Computational modeling of the forward and reverse problems in instrumented sharp indentation , 2001 .

[57]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[58]  Ian M. Robertson,et al.  TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals , 1990 .

[59]  R. H. Wagoner,et al.  Dislocation and grain boundary interactions in metals , 1988 .

[60]  R. Raj,et al.  The role of residual dislocation arrays in slip induced cavitation, migration and dynamic recrystallization at grain boundaries , 1985 .

[61]  S. Miura,et al.  Plastic deformation of aluminium bicrystals having ∑7 and ∑21 coincidence tilt boundaries , 1980 .

[62]  Y. Saeki,et al.  Plastic deformation of aluminum bicrystals 〈100〉 oriented , 1978 .

[63]  B. Chalmers,et al.  Multiple slip in bicrystal deformation , 1957 .