Architectured materials in engineering and biology: fabrication, structure, mechanics and performance

Ever-increasing requirements for structural performance drive the research and the development of stronger, tougher and lighter materials. Specific microstructures, heterogeneities or hybrid compositions are now used in modern materials to generate high performance structures. Pushed to the extreme, these concepts lead to architectured materials, which contain highly controlled structures at length scales which are intermediate between the microscale and the size of the component. This review focuses on dense architectured materials made of building blocks of well-defined size and shape, arranged in two or three dimensions. These building blocks are stiff so their deformation remains small and within elastic limits, but their interfaces can channel cracks and undergo large deformations. These basic principles lead to building blocks which can slide, rotate, separate or interlock collectively, providing a wealth of tunable mechanisms. Nature is well ahead of engineers in making use of architectured materials. Materials such as bone, teeth or mollusc shells are made of stiff building blocks of well-defined sizes and shapes, bonded together by deformable bio-adhesives. These natural materials demonstrate how the interplay between building block properties, shape, size and arrangement together with non-linear behaviour at the interfaces generate unusual combinations of stiffness, strength and toughness. In this review we discuss the general principles underlying the structure and mechanics of engineering architectured materials and of biological and bio-inspired architectured materials. Recent progress and remaining issues in the modelling, design optimisation and fabrication of these materials are also presented. The discussion draws from examples in the engineering and natural worlds, emphasising not only how natural materials can help us improve existing architectured materials, but also how they can inspire entirely new structural materials with unusual and highly attractive combinations of properties.

[1]  Stephen A. Wainwright,et al.  Mechanical Design in Organisms , 2020 .

[2]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[3]  Elena Pasternak,et al.  The principle of topological interlocking in extraterrestrial construction , 2005 .

[4]  Stephen A. Morin,et al.  Using “Click‐e‐Bricks” to Make 3D Elastomeric Structures , 2014, Advanced materials.

[5]  Huajian Gao Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[6]  Rao,et al.  Laminar Ceramics That Exhibit a Threshold Strength. , 1999, Science.

[7]  Thomas Pardoen,et al.  Multifunctional architectured materials for electromagnetic absorption , 2013 .

[8]  N. Huber,et al.  Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure. , 2015, Acta biomaterialia.

[9]  Robert Sinko,et al.  Dimensions of Biological Cellulose Nanocrystals Maximize Fracture Strength. , 2014, ACS macro letters.

[10]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[11]  Yang Mingbo,et al.  Advances in Negative Poisson's Ratio Materials , 2003 .

[12]  Y. Termonia,et al.  Nylons from Nature: Synthetic Analogs to Spider Silk , 1998 .

[13]  F. Barthelat,et al.  A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre , 2015, Bioinspiration & biomimetics.

[14]  Salvatore Torquato,et al.  Optimal Design of Heterogeneous Materials , 2010 .

[15]  J. Quintana,et al.  Anisotropic lattice distortions in biogenic aragonite , 2004, Nature materials.

[16]  Horacio Dante Espinosa,et al.  Mechanical properties of nacre constituents and their impact on mechanical performance , 2006 .

[17]  F. Barthelat,et al.  Strain rate hardening: a hidden but critical mechanism for biological composites? , 2014, Acta biomaterialia.

[18]  S. Spearing,et al.  Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates , 1996, Journal of Materials Science.

[19]  G. Schneider,et al.  Tough Alumina/Polymer Layered Composites with High Ceramic Content , 2015 .

[20]  Xavier Bourrat,et al.  Multiscale structure of sheet nacre. , 2005, Biomaterials.

[21]  J. Hutchinson,et al.  Kinking of A Crack Out of AN Interface , 1989 .

[22]  Elena Pasternak,et al.  Topological interlocking of platonic solids: A way to new materials and structures , 2003 .

[23]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[24]  Younan Xia,et al.  Controlling the Assembly of Silver Nanocubes through Selective Functionalization of Their Faces , 2008 .

[25]  P. Fratzl,et al.  Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials , 2007 .

[26]  S. Stupp,et al.  Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.

[27]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[28]  Elena Pasternak,et al.  A new concept in design of materials and structures: assemblies of interlocked tetrahedron-shaped elements , 2001 .

[29]  J. Dunlop,et al.  Architectured Structural Materials: A Parallel Between Nature and Engineering , 2009 .

[30]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[31]  G. Mayer,et al.  Influence of moisture on the mechanical behavior of a natural composite. , 2010, Acta biomaterialia.

[32]  F Barthelat,et al.  Overcoming the brittleness of glass through bio-inspiration and micro-architecture , 2014, Nature Communications.

[33]  Yazan N. Billeh,et al.  Osmosis-Based Pressure Generation: Dynamics and Application , 2014, PloS one.

[34]  Philippe Block,et al.  Real-time limit analysis of vaulted masonry buildings , 2006 .

[35]  H. Yao,et al.  Bio-inspired interfacial strengthening strategy through geometrically interlocking designs. , 2012, Journal of the mechanical behavior of biomedical materials.

[36]  G. Mayer,et al.  New classes of tough composite materials—Lessons from natural rigid biological systems , 2006 .

[37]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[38]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[39]  Joanna Aizenberg,et al.  Biological glass fibers: correlation between optical and structural properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. S. Cook,et al.  Stresses in bonded materials with a crack perpendicular to the interface , 1972 .

[41]  Francois Barthelat,et al.  Biomimetics for next generation materials , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  John D. Currey,et al.  The mechanical behaviour of some molluscan hard tissues , 2009 .

[44]  Leon Mishnaevsky,et al.  3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers , 2009 .

[45]  P. Fratzl,et al.  Mechanical Function of a Complex Three-dimensional Suture Joining the Bony Elements in the Shell of the Red-eared Slider Turtle , 2009 .

[46]  O. Bouaziz Geometrically induced strain hardening , 2013 .

[47]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[48]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[49]  Peter Fratzl,et al.  Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. , 2009, Integrative and comparative biology.

[50]  Richard D. James,et al.  The Material Is the Machine , 2005, Science.

[51]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[52]  Tomasz Arciszewski,et al.  Evolutionary computation and structural design: A survey of the state-of-the-art , 2005 .

[53]  Ed Habtour,et al.  Impact mechanics of topologically interlocked material assemblies , 2015 .

[54]  M. Swain,et al.  Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. , 2008, Journal of the mechanical behavior of biomedical materials.

[55]  N. Pugno,et al.  Extreme strength observed in limpet teeth , 2015, Journal of The Royal Society Interface.

[56]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[57]  André R Studart,et al.  Self-shaping composites with programmable bioinspired microstructures , 2013, Nature Communications.

[58]  F. X. Kromm,et al.  Proposal for a multi-material design procedure , 2014 .

[59]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[60]  John Evans,et al.  Microengineering of Ceramics by Direct Ink‐Jet Printing , 1999 .

[61]  H. Kahn,et al.  Bioinspired micro-composite structure , 2005 .

[62]  James C. Weaver,et al.  Responsive materials: A novel design for enhanced machine-augmented composites , 2014, Scientific Reports.

[63]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[64]  S. M. Gruner,et al.  Biomimetic Pathways for Assembling Inorganic Thin Films , 1996, Science.

[65]  Ludovico Cademartiri,et al.  LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants , 2014, PloS one.

[66]  Christine Ortiz,et al.  Stiffness and strength of suture joints in nature. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Michael F. Ashby,et al.  Designing architectured materials , 2013 .

[68]  Dietmar Koch,et al.  Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks , 2013 .

[69]  Y. Estrin,et al.  Point loading of assemblies of interlocked cube-shaped elements , 2008 .

[70]  Zhigang Suo,et al.  New directions in mechanics , 2005 .

[71]  H. Lipson,et al.  Microbricks for Three-Dimensional Reconfigurable Modular Microsystems , 2011, Journal of Microelectromechanical Systems.

[72]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[73]  J. Barton,et al.  A remarkably strong natural glassy rod: the anchoring spicule of theMonorhaphis sponge , 1989 .

[74]  Yuri Estrin,et al.  Damping properties of an assembly of topologically interlocked cubes , 2009 .

[75]  H. Wadley Cellular Metals Manufacturing , 2002 .

[76]  Richard Weinkamer,et al.  Artful interfaces within biological materials , 2011 .

[77]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[78]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[79]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[80]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[81]  S Torquato,et al.  Packing, tiling, and covering with tetrahedra. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[83]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[84]  G. Budd Why are arthropods segmented? , 2001, Evolution & development.

[85]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[86]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[87]  George M. Whitesides,et al.  Self-Assembly of 10-μm-Sized Objects into Ordered Three-Dimensional Arrays , 2001 .

[88]  O. Bouaziz,et al.  Heterogeneous and Architectured Materials: A Possible Strategy for Design of Structural Materials , 2008 .

[89]  J. Aizenberg,et al.  Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature , 2008 .

[90]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[91]  Wen Yang,et al.  Mechanical adaptability of the Bouligand-type structure in natural dermal armour , 2013, Nature Communications.

[92]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[93]  Y. Estrin,et al.  Interlocking of convex polyhedra: towards a geometric theory of fragmented solids , 2004 .

[94]  T. Belytschko,et al.  Biological Structures Mitigate Catastrophic Fracture Through Various Strategies , 2005 .

[95]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[96]  Regular, low density cellular structures - rapid prototyping, numerical simulation, mechanical testing , 2004 .

[97]  Himadri S. Gupta,et al.  On the role of interface polymers for the mechanics of natural polymeric composites , 2004 .

[98]  Himadri S. Gupta,et al.  Nanoscale deformation mechanisms in bone. , 2005, Nano letters.

[99]  Wen Yang,et al.  Natural Flexible Dermal Armor , 2013, Advanced materials.

[100]  D. Arola,et al.  On the Mechanics of Fatigue and Fracture in Teeth. , 2014, Applied mechanics reviews.

[101]  Paul Duval,et al.  Indentation Behaviour of Interlocked Structures Made of Ice: Influence of the Friction Coefficient , 2007 .

[102]  M. Meyers,et al.  Organic interlamellar layers, mesolayers and mineral nanobridges: contribution to strength in abalone (Haliotis rufescence) nacre. , 2014, Acta biomaterialia.

[103]  Raymond J. Cipra,et al.  Scaling of the Elastic Behavior of Two-Dimensional Topologically Interlocked Materials Under Transverse Loading , 2014 .

[104]  Seung Ki Moon,et al.  Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures , 2014, International Journal of Precision Engineering and Manufacturing-Green Technology.

[105]  R. Dendievel,et al.  Indentation of interlocked assemblies: 3D discrete simulations and experiments. , 2013 .

[106]  P. Fratzl,et al.  Nanoscale deformation mechanisms in bone. , 2009, Nano letters.

[107]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[108]  K. Kendall,et al.  A simple way to make tough ceramics , 1990, Nature.

[109]  Huajian Gao,et al.  On optimal hierarchy of load-bearing biological materials , 2011, Proceedings of the Royal Society B: Biological Sciences.

[110]  Dwayne Arola,et al.  Role of prism decussation on fatigue crack growth and fracture of human enamel. , 2009, Acta biomaterialia.

[111]  Eduardo Saiz,et al.  Bioinspired Strong and Highly Porous Glass Scaffolds , 2011, Advanced functional materials.

[112]  Peter Fratzl,et al.  Pressurized honeycombs as soft-actuators: a theoretical study , 2014, Journal of The Royal Society Interface.

[113]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[114]  Elena Pasternak,et al.  Fracture Resistant Structures Based on Topological Interlocking with Non‐planar Contacts , 2003 .

[115]  François Fleury Evaluation of the Perpendicular Flat Vault Inventor's Intuitions Through Large Scale Instrumented Testing , 2009 .

[116]  I. Aksay,et al.  Biomimetics. Design and Processing of Materials. , 1995 .

[117]  D. Arola,et al.  Fracture processes and mechanisms of crack growth resistance in human enamel , 2010 .

[118]  R. F. Ker Mechanics of tendon, from an engineering perspective , 2007 .

[119]  Nicholas A Kotov,et al.  Inkjet deposition of layer-by-layer assembled films. , 2010, Journal of the American Chemical Society.

[120]  Peng Song,et al.  Recursive interlocking puzzles , 2012, ACM Trans. Graph..

[121]  Hiroki Sayama,et al.  A review of morphogenetic engineering , 2013, Natural Computing.

[122]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[123]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[124]  A. Dyskina,et al.  A new principle in design of composite materials : reinforcement by interlocked elements , 2002 .

[125]  M. D. Thouless,et al.  Crack Deflection and Propagation in Layered Silicon Nitride/Boron Nitride Ceramics , 2005 .

[126]  S. Mann,et al.  The Chemistry of Form. , 2000, Angewandte Chemie.

[127]  Saumitra Das,et al.  Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus , 2011, Scientific reports.

[128]  Yuri Estrin,et al.  Enhancement of sound absorption properties using topologically interlocked elements , 2012 .

[129]  F. Barthelat,et al.  An improved failure criterion for biological and engineered staggered composites , 2013, Journal of The Royal Society Interface.

[130]  Y. Bai,et al.  Effects of nanostructures on the fracture strength of the interfaces in nacre , 2003 .

[131]  J. E. Gordon,et al.  A mechanism for the control of crack propagation in all-brittle systems , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[132]  Brian Lawn,et al.  Fracture of brittle solids: Atomic aspects of fracture , 1993 .

[133]  Elena Pasternak,et al.  Topological interlocking as a material design concept , 2011 .

[134]  J. Hutchinson,et al.  Cracking and stress redistribution in ceramic layered composites , 1993 .

[135]  Francois Barthelat,et al.  Skin and scales of teleost fish: Simple structure but high performance and multiple functions , 2014 .

[136]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[137]  M. Ashby,et al.  Micro-architectured materials: past, present and future , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[138]  Owen Y Loh,et al.  Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. , 2011, Nature communications.

[139]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[140]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[141]  Paul K. Hansma,et al.  Methods for fabricating and characterizing a new generation of biomimetic materials , 1999 .

[142]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[143]  S. Santhanam,et al.  Strombus gigas inspired biomimetic ceramic composites via SHELL—Sequential Hierarchical Engineered Layer Lamination , 2013 .

[144]  Raymond J. Cipra,et al.  Transverse loading of cellular topologically interlocked materials , 2012 .

[145]  W. Pogue,et al.  Tiled Composite Laminates , 2010 .

[146]  F. Barthelat,et al.  Self-assembly of microscopic tablets within polymeric thin films: a possible pathway towards new hybrid materials , 2015 .

[147]  F Barthelat,et al.  The quest for stiff, strong and tough hybrid materials: an exhaustive exploration , 2013, Journal of The Royal Society Interface.

[148]  A. Khademhosseini,et al.  Micro‐Masonry: Construction of 3D Structures by Microscale Self‐Assembly , 2010, Advanced materials.

[149]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[150]  D. Gracias,et al.  Importance of surface patterns for defect mitigation in three-dimensional self-assembly. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[151]  R. Ritchie,et al.  Osteopontin deficiency increases bone fragility but preserves bone mass. , 2010, Bone.

[152]  Y. Bréchet,et al.  Architectured materials: Expanding materials space , 2013 .

[153]  Reza Rabiei,et al.  Toughness amplification in natural composites , 2011 .

[154]  S. Mann,et al.  Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. , 2003, Journal of structural biology.

[155]  M. Brocato,et al.  A new type of stone dome based on Abeille’s bond , 2012 .

[156]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .

[157]  Alberto Redaelli,et al.  Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils , 2010 .

[158]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[159]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[160]  John W. Hutchinson,et al.  Crack deflection at an interface between dissimilar elastic-materials , 1989 .

[161]  Deju Zhu,et al.  A novel biomimetic material duplicating the structure and mechanics of natural nacre , 2011 .

[162]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[163]  Raymond J. Cipra,et al.  Structural integrity during remanufacture of a topologically interlocked material , 2012 .

[164]  Francois Barthelat,et al.  Structure and Mechanical Performance of a “Modern” Fish Scale , 2012 .

[165]  M. Boyce,et al.  Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces , 2014 .

[166]  Michael F. Ashby,et al.  Hybrids to fill holes in material property space , 2005 .

[167]  Peter Fratzl,et al.  Mechanical Function of a Complex Three‐Dimensional Suture Joining the Bony Elements in the Shell of the Red‐Eared Slider Turtle , 2009 .

[168]  Markus J. Buehler,et al.  Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks , 2011, Scientific reports.

[169]  M. Buehler,et al.  Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing , 2013 .

[170]  M. Sarikaya,et al.  An introduction to biomimetics: A structural viewpoint , 1994, Microscopy research and technique.

[171]  Dietmar Koch,et al.  Mechanical Properties of Topologically Interlocked Structures with Elements Produced by Freeze Gelation of Ceramic Slurries , 2012 .