Classification of malignant and benign liver tumors using a radiomics approach
暂无分享,去创建一个
Stefan Klein | Wiro J. Niessen | Martijn P. A. Starmans | Razvan L. Miclea | Sebastian R. van der Voort | Maarten G. Thomeer | S. Klein | W. Niessen | M. Thomeer | M. Starmans | S. V. D. Voort | R. Miclea | M. P. Starmans
[1] S. Plevritis,et al. Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features. , 2015, Radiology.
[2] Stefan Klein,et al. SimpleElastix: A User-Friendly, Multi-lingual Library for Medical Image Registration , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
[3] Patrick Granton,et al. Radiomics: extracting more information from medical images using advanced feature analysis. , 2012, European journal of cancer.
[4] Yoshua Bengio,et al. Inference for the Generalization Error , 1999, Machine Learning.
[5] Matti Pietikäinen,et al. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[6] A. Befeler,et al. Hepatocellular carcinoma: diagnosis and treatment. , 2002, Gastroenterology.
[7] Max A. Viergever,et al. Adaptive Stochastic Gradient Descent Optimisation for Image Registration , 2009, International Journal of Computer Vision.
[8] J. Buckels,et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis , 2008, Gut.
[9] M. Thomeer,et al. Genotype-phenotype correlations in hepatocellular adenoma: an update of MRI findings. , 2014, Diagnostic and interventional radiology.
[10] Christos Davatzikos,et al. Imaging genomics in cancer research: limitations and promises. , 2016, The British journal of radiology.
[11] P. Lambin,et al. Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation , 2014, PloS one.
[12] Claude B. Sirlin,et al. LI‐RADS (Liver Imaging Reporting and Data System): Summary, discussion, and consensus of the LI‐RADS Management Working Group and future directions , 2015, Hepatology.
[13] David Victor,et al. Hepatocellular carcinoma: a review , 2016, Journal of hepatocellular carcinoma.
[14] Leonardo Franco,et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem , 2010, Artif. Intell. Medicine.
[15] P. Lambin,et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.
[16] Prateek Prasanna,et al. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor , 2016, Scientific Reports.
[17] A. Jemal,et al. Global cancer statistics, 2012 , 2015, CA: a cancer journal for clinicians.
[18] Vishwa Parekh,et al. Radiomics: a new application from established techniques , 2016, Expert review of precision medicine and drug development.
[19] Xavier Geets,et al. Radiomics applied to lung cancer: a review , 2016 .
[20] Won Kim,et al. Hepatocellular Adenoma and Focal Nodular Hyperplasia , 2013 .
[21] Olivier Gevaert,et al. non – small cell lung cancer : Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data — Methods and Preliminary Results 1 , 2012 .
[22] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[23] Kenzo Kobayashi,et al. Prospective study of early detection of hepatocellular carcinoma in patients with cirrhosis , 1990, Hepatology.