On singular values of matrices with independent rows

We present deviation inequalities of random operators of the form 1 N ∑N i=1 Xi ⊗ Xi from the average operator E(X ⊗ X), where Xi are independent random vectors distributed as X, which is a random vector in R or in `2. We use these inequalities to estimate the singular values of random matrices with independent rows (without assuming that the entries are independent).

[1]  I. Gohberg,et al.  Basic Operator Theory , 1981 .

[2]  G. Pisier Some applications of the metric entropy condition to harmonic analysis , 1983 .

[3]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[4]  H. König Eigenvalue Distribution of Compact Operators , 1986 .

[5]  Zoltán Füredi,et al.  Approximation of the sphere by polytopes having few vertices , 1988 .

[6]  B. Carl,et al.  Gelfand numbers of operators with values in a Hilbert space , 1988 .

[7]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[8]  E. Gluskin EXTREMAL PROPERTIES OF ORTHOGONAL PARALLELEPIPEDS AND THEIR APPLICATIONS TO THE GEOMETRY OF BANACH SPACES , 1989 .

[9]  G. Pisier,et al.  Non commutative Khintchine and Paley inequalities , 1991 .

[10]  Simeon Alesker,et al.  ψ2-Estimate for the Euclidean Norm on a Convex Body in Isotropic Position , 1995 .

[11]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[12]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[13]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[14]  V. Koltchinskii Asymptotics of Spectral Projections of Some Random Matrices Approximating Integral Operators , 1998 .

[15]  V. Milman,et al.  Concentration Property on Probability Spaces , 2000 .

[16]  V. Koltchinskii,et al.  Random matrix approximation of spectra of integral operators , 2000 .

[17]  M. Ledoux The concentration of measure phenomenon , 2001 .

[18]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[19]  Shahar Mendelson,et al.  On the Performance of Kernel Classes , 2003, J. Mach. Learn. Res..

[20]  On the (fi sub 2-) behaviour of linear functionals on isotropic convex bodies , 2005 .

[21]  A. Giannopoulos,et al.  Random Points in Isotropic Unconditional Convex Bodies , 2005 .

[22]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .