Compressive Evaluation in Human Motion Tracking

The powerful theory of compressive sensing enables an efficient way to recover sparse or compressible signals from non-adaptive, sub-Nyquist-rate linear measurements. In particular, it has been shown that random projections can well approximate an isometry, provided that the number of linear measurements is no less than twice of the sparsity level of the signal. Inspired by these, we propose a compressive anneal particle filter to exploit sparsity existing in image-based human motion tracking. Instead of performing full signal recovery, we evaluate the observation likelihood directly in the compressive domain of the observed images. Moreover, we introduce a progressive multilevel wavelet decomposition staged at each anneal layer to accelerate the compressive evaluation in a coarse-to-fine fashion. The experiments with the benchmark dataset HumanEvaII show that the tracking process can be significantly accelerated, and the tracking accuracy is well maintained and comparable to the method using original image observations.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[3]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[5]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[6]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[7]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[8]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[10]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[11]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[13]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[14]  Daniel Thalmann,et al.  Joint-dependent local deformations for hand animation and object grasping , 1989 .

[15]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[16]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[17]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[18]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[19]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[20]  Richard G. Baraniuk,et al.  Distributed Compressive Sensing , 2009, ArXiv.

[21]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion , 2006 .

[22]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..