Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development

[1]  Kristy M. Hawkins,et al.  Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. , 2008, Nature chemical biology.

[2]  T. Gardner Synthetic biology: from hype to impact. , 2013, Trends in biotechnology.

[3]  N. White,et al.  Qinghaosu (Artemisinin): The Price of Success , 2008, Science.

[4]  Nathan J Hillson,et al.  j5 DNA assembly design automation software. , 2012, ACS synthetic biology.

[5]  P. Newton,et al.  A Major Genome Region Underlying Artemisinin Resistance in Malaria , 2012, Science.

[6]  D. Botstein,et al.  Plasmid construction by homologous recombination in yeast. , 1987, Gene.

[7]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[8]  H. Bouwmeester,et al.  Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. , 1999, Phytochemistry.

[9]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[10]  Brian F. Pfleger,et al.  Application of Functional Genomics to Pathway Optimization for Increased Isoprenoid Production , 2008, Applied and Environmental Microbiology.

[11]  D. Endy Foundations for engineering biology , 2005, Nature.

[12]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[13]  Maxime Durot,et al.  Rapid and reliable DNA assembly via ligase cycling reaction. , 2014, ACS synthetic biology.

[14]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[15]  Jay D Keasling,et al.  Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. , 2007, Metabolic engineering.

[16]  J. Schenkman,et al.  The many roles of cytochrome b5. , 2003, Pharmacology & therapeutics.

[17]  Drew Endy,et al.  Quantitative estimation of activity and quality for collections of functional genetic elements , 2013, Nature Methods.

[18]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[19]  H. Bouwmeester,et al.  The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. , 2013, The New phytologist.

[20]  Frances H. Arnold,et al.  Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase , 2002, Nature Biotechnology.

[21]  Lydia Tabernero,et al.  Coenzyme a Reductases Class Ii 3-hydroxy-3-methylglutaryl , 2022 .

[22]  Karen I Barnes,et al.  Impact of the large-scale deployment of artemether/lumefantrine on the malaria disease burden in Africa: case studies of South Africa, Zambia and Ethiopia , 2009, Malaria Journal.

[23]  Duboc,et al.  An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. , 2000, Enzyme and microbial technology.

[24]  Jay D. Keasling,et al.  High-Level Production of Amorpha-4,11-Diene, a Precursor of the Antimalarial Agent Artemisinin, in Escherichia coli , 2009, PloS one.

[25]  K. Oldenburg,et al.  Recombination-mediated PCR-directed plasmid construction in vivo in yeast. , 1997, Nucleic acids research.

[26]  P. K. Ajikumar,et al.  Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae , 2013, Applied Microbiology and Biotechnology.

[27]  X. Su,et al.  Discovery, mechanisms of action and combination therapy of artemisinin , 2009, Expert review of anti-infective therapy.

[28]  Jay D Keasling,et al.  High‐level production of amorpha‐4,11‐diene in a two‐phase partitioning bioreactor of metabolically engineered Escherichia coli , 2006, Biotechnology and bioengineering.

[29]  P. Covello,et al.  Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annuaThis paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute. , 2009 .

[30]  S. O’Connor,et al.  Recent progress in the metabolic engineering of alkaloids in plant systems. , 2013, Current opinion in biotechnology.

[31]  P. Covello,et al.  Functional genomics and the biosynthesis of artemisinin. , 2007, Phytochemistry.

[32]  Jay D Keasling,et al.  Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. , 2007, Metabolic engineering.

[33]  Hartmut K. Lichtenthaler,et al.  THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS. , 1999, Annual review of plant physiology and plant molecular biology.

[34]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[35]  Jens Nielsen,et al.  Synergies between synthetic biology and metabolic engineering , 2011, Nature Biotechnology.

[36]  F. Sato,et al.  Microbial production of plant benzylisoquinoline alkaloids , 2008, Proceedings of the National Academy of Sciences.

[37]  Merja Penttilä,et al.  Yeast oligo-mediated genome engineering (YOGE). , 2013, ACS synthetic biology.

[38]  Hung‐wen Liu,et al.  Methylerythritol phosphate pathway of isoprenoid biosynthesis. , 2013, Annual review of biochemistry.

[39]  Brian F. Pfleger,et al.  Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes , 2006, Nature Biotechnology.

[40]  L. Waskell,et al.  Cytochrome b5 Increases the Rate of Product Formation by Cytochrome P450 2B4 and Competes with Cytochrome P450 Reductase for a Binding Site on Cytochrome P450 2B4* , 2007, Journal of Biological Chemistry.

[41]  W. Stemmer,et al.  Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. , 1995, Gene.

[42]  Shu-Lin Chang,et al.  Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. , 2012, Journal of the American Chemical Society.

[43]  Jay D Keasling,et al.  Redirection of flux through the FPP branch‐point in Saccharomyces cerevisiae by down‐regulating squalene synthase , 2008, Biotechnology and bioengineering.

[44]  J. Keasling,et al.  The in vivo synthesis of plant sesquiterpenes by Escherichia coli. , 2001, Biotechnology and bioengineering.

[45]  Zengyi Shao,et al.  DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways , 2008, Nucleic acids research.

[46]  R. Lill,et al.  Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. , 2008, Annual review of biochemistry.

[47]  J. Keasling,et al.  Mono and diterpene production in Escherichia coli , 2004, Biotechnology and bioengineering.

[48]  N. Acton,et al.  A simple conversion of artemisinic acid into artemisinin. , 1989, Journal of natural products.

[49]  Farren J. Isaacs,et al.  Programming cells by multiplex genome engineering and accelerated evolution , 2009, Nature.

[50]  Drew Endy,et al.  Amplifying Genetic Logic Gates , 2013, Science.

[51]  Organización Mundial de la Salud Guidelines for the treatment of malaria , 2010 .

[52]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[53]  W. Muraskin Artemisia Annua, Artemisinin, ACTS & Malaria Control in Africa: Tradition, Science and Public Policy by Dana G. Dalrymple (review) , 2014 .

[54]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[55]  Clay C C Wang,et al.  Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. , 2012, Journal of the American Chemical Society.

[56]  Jean-Marc Daran,et al.  A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences , 2013, Microbial Cell Factories.

[57]  Timothy S. Ham,et al.  Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools , 2012, Nucleic acids research.

[58]  Drew Endy,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[59]  E. Hsu Reflections on the 'discovery' of the antimalarial qinghao. , 2006, British journal of clinical pharmacology.

[60]  Jens Nielsen,et al.  Production of plant sesquiterpenes in Saccharomyces cerevisiae: Effect of ERG9 repression on sesquiterpene biosynthesis , 2008, Biotechnology and bioengineering.

[61]  S. Jennewein,et al.  Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. , 2008, Metabolic engineering.

[62]  Jay D Keasling,et al.  Microbial sensors for small molecules: development of a mevalonate biosensor. , 2007, Metabolic engineering.

[63]  R. Hallett,et al.  Artemisinin-Resistant Malaria: Research Challenges, Opportunities, and Public Health Implications , 2012, The American journal of tropical medicine and hygiene.

[64]  Jay D. Keasling,et al.  Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin , 2012, Proceedings of the National Academy of Sciences.

[65]  D. Endy,et al.  Rewritable digital data storage in live cells via engineered control of recombination directionality , 2012, Proceedings of the National Academy of Sciences.

[66]  M. Rohmer,et al.  Distribution of mevalonate and glyceraldehyde 3-phosphate/pyruvate routes for isoprenoid biosynthesis in some gram-negative bacteria and mycobacteria. , 1998, FEMS microbiology letters.

[67]  Jingdong Tian,et al.  Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways , 2009, PloS one.

[68]  A. Munro,et al.  Roles of key active-site residues in flavocytochrome P450 BM3. , 1999, The Biochemical journal.

[69]  C. Satishchandran,et al.  Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. , 2000, Gene.

[70]  Keith E. J. Tyo,et al.  Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. , 2008, Molecular pharmaceutics.

[71]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[72]  Keith E. J. Tyo,et al.  Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli , 2010, Science.

[73]  G. Stephanopoulos,et al.  Metabolic engineering: past and future. , 2013, Annual review of chemical and biomolecular engineering.

[74]  Meng Wang,et al.  Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster , 2013, Nature Communications.

[75]  B. Andrews,et al.  Rapid and Efficient Plasmid Construction by Homologous Recombination in Yeast. , 2015, Cold Spring Harbor protocols.

[76]  D. L. Klayman,et al.  Qinghaosu (artemisinin): an antimalarial drug from China. , 1985, Science.

[77]  Gregory Stephanopoulos,et al.  Synthetic biology and metabolic engineering. , 2012, ACS synthetic biology.

[78]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[79]  F. Sato,et al.  A bacterial platform for fermentative production of plant alkaloids , 2011, Nature communications.

[80]  R. Shretta,et al.  Stabilizing supply of artemisinin and artemisinin-based combination therapy in an era of wide-spread scale-up , 2012, Malaria Journal.

[81]  William Amponsah Artemisia annua, Artemisinin, ACTs & Malaria Control in Africa: Tradition, Science and Public Policy , 2013 .

[82]  Yansheng Zhang,et al.  The Molecular Cloning of Artemisinic Aldehyde Δ11(13) Reductase and Its Role in Glandular Trichome-dependent Biosynthesis of Artemisinin in Artemisia annua* , 2008, Journal of Biological Chemistry.

[83]  Jay D Keasling,et al.  Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. , 2007, Nature chemical biology.

[84]  C. Gerhardt Untersuchungen über die wasserfreien organischen Säuren , 1853 .

[85]  Lorenz von Seidlein,et al.  Artemisinin resistance: current status and scenarios for containment , 2010, Nature Reviews Microbiology.

[86]  Nathan J Hillson,et al.  DeviceEditor visual biological CAD canvas , 2012, Journal of Biological Engineering.

[87]  Geoffrey D. Brown The Biosynthesis of Artemisinin (Qinghaosu) and the Phytochemistry of Artemisia annua L. (Qinghao) , 2010, Molecules.

[88]  Nathan J Hillson,et al.  PaR-PaR laboratory automation platform. , 2013, ACS synthetic biology.

[89]  K. Rainsford Aspirin and Related Drugs , 2004 .

[90]  Y. Wu,et al.  How Chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives? What are the future perspectives? , 1998, Medecine tropicale : revue du Corps de sante colonial.

[91]  H. Shapiro,et al.  Giant Crawler Cranes , 1999 .

[92]  H. Bouwmeester,et al.  Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. , 2005, Planta medica.

[93]  J R Johnston,et al.  Genealogy of principal strains of the yeast genetic stock center. , 1986, Genetics.

[94]  Douglas Densmore,et al.  Automated assembly of standard biological parts. , 2011, Methods in enzymology.

[95]  S. Hashimoto,et al.  Production of mevalonate by a metabolically-engineered Escherichia coli , 2004, Biotechnology Letters.

[96]  M. Rohmer,et al.  Isoprenoid Synthesis in Plants and Microorganisms , 2013, Springer New York.

[97]  R. Zangar,et al.  Mechanisms that regulate production of reactive oxygen species by cytochrome P450. , 2004, Toxicology and applied pharmacology.

[98]  R. Ebel,et al.  Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase:cytochrome P-450 interaction. , 1976, The Journal of biological chemistry.

[99]  J. Keasling,et al.  Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. , 2007, The American journal of tropical medicine and hygiene.

[100]  Joana C. Silva,et al.  Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia , 2012, Proceedings of the National Academy of Sciences.

[101]  J. Lenihan,et al.  Developing an industrial artemisinic acid fermentation process to support the cost‐effective production of antimalarial artemisinin‐based combination therapies , 2008, Biotechnology progress.

[102]  J. Keasling,et al.  High-level semi-synthetic production of the potent antimalarial artemisinin , 2013, Nature.

[103]  Jay D Keasling,et al.  Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid , 2008, BMC biotechnology.

[104]  C. Nakamura,et al.  Metabolic engineering for the microbial production of 1,3-propanediol. , 2003, Current opinion in biotechnology.

[105]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[106]  David Baker,et al.  A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). , 2009, ACS chemical biology.

[107]  L. David,et al.  Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast , 2006, PLoS genetics.

[108]  A. Bacher,et al.  Biosynthesis of isoprenoids via the non-mevalonate pathway , 2004, Cellular and Molecular Life Sciences CMLS.

[109]  Gilean McVean,et al.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia , 2013, Nature Genetics.