Mediocremonas mediterraneus, a New Member within the Developea

The Stramenopiles are a large and diverse group of eukaryotes that possess various lifestyles required to thrive in a broad array of environments. The stramenopiles branch with the alveolates, rhizarians, and telonemids, forming the supergroup TSAR. Here, we present a new genus and species of aquatic nanoflagellated stramenopile: Mediocremonas mediterraneus, a free-swimming heterotrophic predator. M. mediterraneus cell bodies measure between 2.0-4.0 μm in length and 1.2-3.7 μm in width, possessing two flagella and an oval body morphology. The growth and grazing rate of M. mediterraneus in batch cultures ranges from 0.68 to 1.83 d-1 and 1.99 to 5.38 bacteria h-1, respectively. M. mediterraneus was found to be 93.9% phylogenetically similar with Developayella elegans and 94.7% with Develorapax marinus, two members within the class Developea. The phylogenetic position of the Developea and the ability of M. mediterraneus to remain in culture makes it a good candidate for further genomic studies that could help us to better understand phagotropy in marine systems as well as the transition from heterotrophy to phototrophy within the stramenopiles.

[1]  I. Ferrera,et al.  Quantifying long-term recurrence in planktonic microbial eukaryotes. , 2019, Molecular ecology.

[2]  Matthew W. Brown,et al.  Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes , 2018, The Journal of eukaryotic microbiology.

[3]  Daniele De Corte,et al.  Differential Response of Cafeteria roenbergensis to Different Bacterial and Archaeal Prey Characteristics , 2018, Microbial Ecology.

[4]  Fabien Burki,et al.  New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life , 2018, bioRxiv.

[5]  Matthew W. Brown,et al.  Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides , 2018, Open Biology.

[6]  T. Cavalier-smith Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences , 2017, Protoplasma.

[7]  D. Moreira,et al.  A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). , 2016, Molecular biology and evolution.

[8]  P. Straight,et al.  Bacterial Communities: Interactions to Scale , 2016, Front. Microbiol..

[9]  S. Karpov,et al.  Heterokont Predator Develorapax marinus gen. et sp. nov. – A Model of the Ochrophyte Ancestor , 2016, Front. Microbiol..

[10]  D. Montagnes,et al.  Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives. , 2016, European journal of protistology.

[11]  C. R. Lovell,et al.  Microbial Surface Colonization and Biofilm Development in Marine Environments , 2015, Microbiology and Molecular Reviews.

[12]  P. Deschamps,et al.  Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. , 2015, Environmental microbiology.

[13]  Y. Inagaki,et al.  Morphological Identities of Two Different Marine Stramenopile Environmental Sequence Clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. nov., comb. nov. , 2015, The Journal of eukaryotic microbiology.

[14]  S. Audic,et al.  Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles , 2013, The ISME Journal.

[15]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[16]  B. Drake Differential Response , 2013 .

[17]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[18]  M. Sieracki,et al.  Taming the smallest predators of the oceans , 2012, The ISME Journal.

[19]  J. Gasol,et al.  Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of the NW Mediterranean , 2012 .

[20]  R. Stepanauskas,et al.  Capturing diversity of marine heterotrophic protists: one cell at a time , 2011, The ISME Journal.

[21]  T. Maruyama,et al.  Molecular Evidence that Phylogenetically Diverged Ciliates Are Active in Microbial Mats of Deep‐Sea Cold‐Seep Sediment , 2010, The Journal of eukaryotic microbiology.

[22]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[23]  F. Not,et al.  Grazing rates and functional diversity of uncultured heterotrophic flagellates , 2009, The ISME Journal.

[24]  Kevin S. W. Tan,et al.  New Insights on Classification, Identification, and Clinical Relevance of Blastocystis spp , 2008, Clinical Microbiology Reviews.

[25]  R. Massana,et al.  Protistan Grazing on Marine Bacterioplankton , 2008 .

[26]  Roman Stocker,et al.  Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches , 2008, Proceedings of the National Academy of Sciences.

[27]  Esther Garcés,et al.  CHARACTERIZATION OF NW MEDITERRANEAN KARLODINIUM SPP. (DINOPHYCEAE) STRAINS USING MORPHOLOGICAL, MOLECULAR, CHEMICAL, AND PHYSIOLOGICAL METHODOLOGIES 1 , 2006 .

[28]  U. Christaki,et al.  Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). , 2005, Environmental microbiology.

[29]  T. Cavalier-smith,et al.  Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) , 2006, Journal of Molecular Evolution.

[30]  R. Andersen,et al.  Biology and systematics of heterokont and haptophyte algae. , 2004, American journal of botany.

[31]  C. Pedrós-Alió,et al.  Phylogenetic and Ecological Analysis of Novel Marine Stramenopiles , 2004, Applied and Environmental Microbiology.

[32]  D. Caron,et al.  Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry , 2004 .

[33]  E. Sherr,et al.  Significance of predation by protists in aquatic microbial food webs , 2004, Antonie van Leeuwenhoek.

[34]  M. Weitere,et al.  Functional diversity of heterotrophic flagellates in aquatic ecosystems , 2003 .

[35]  Ramon Massana,et al.  Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and Sequencing , 2001, Applied and Environmental Microbiology.

[36]  J. Boenigk,et al.  Particle Handling during Interception Feeding by Four Species of Heterotrophic Nanoflagellates , 2000, The Journal of eukaryotic microbiology.

[37]  Detlef D. Leipe,et al.  16S-like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group , 1996 .

[38]  S. Tong Developayella elegans nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton , 1995 .

[39]  Carissa A. Sanchez,et al.  Comparative genomic analysis of tumors: detection of DNA losses and amplification. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. K. Bjørnsen,et al.  The size ratio between planktonic predators and their prey , 1994 .

[41]  J. D. Eccleston-Parry,et al.  A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. , 1994 .

[42]  T. Cavalier-smith The kingdom Chromista: Origin and systematics , 1986 .

[43]  J. C. Goldman,et al.  Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain , 1985 .

[44]  B. Frost EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS1 , 1972 .

[45]  B. Mr EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS , 1972 .