Mathematical Methods for Curves and Surfaces

A key factor in developing and assessing any vibration attenuation technique for elastic systems is the measure that quantifies the occurring vibrations. In this paper, we propose a general and instantaneous vibration measure which allows for more subtle methods of localized vibration attenuation techniques. This measure is based on extracting the vibrational part from the conventional tracking error signal using wavelet technique. The paper also provides a method for constructing a wavelet function based on the system impulse response. This wavelet outperforms the existing ones in representing the system behavior while guaranteeing admissibility and providing sufficient smoothness and rate of decay in both time and frequency domains.

[1]  B. De Man,et al.  Distance-driven projection and backprojection in three dimensions. , 2004, Physics in medicine and biology.

[2]  Kai Hormann,et al.  Parameterization of Triangulations and Unorganized Points , 2002, Tutorials on Multiresolution in Geometric Modelling.

[3]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[4]  Jens Gravesen,et al.  Isogeometric Shape Optimization of Vibrating Membranes , 2011 .

[5]  sanjay kumar khattri Grid generation and adaptation by functionals , 2006 .

[6]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[7]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[8]  Craig Gotsman,et al.  A Complex View of Barycentric Mappings , 2011, Comput. Graph. Forum.

[9]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[10]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[11]  Emmanuel J. Candès,et al.  On the Fundamental Limits of Adaptive Sensing , 2011, IEEE Transactions on Information Theory.

[12]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[13]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2010, Comput. Aided Des..

[14]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[15]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[16]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[17]  Yoram Bresler,et al.  Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography , 1998, IEEE Trans. Image Process..

[18]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[19]  Jens Gravesen,et al.  Isogeometric Shape Optimization for Electromagnetic Scattering Problems , 2012 .

[20]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[24]  André Galligo,et al.  A construction of injective parameterizations of domains for isogeometric applications , 2012, SNC '11.

[25]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[26]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[27]  Fida Kamal Dankar Harmonic mappings of multiply connected domains , 1997 .

[28]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[29]  Bert Jüttler,et al.  Parameterization of Contractible Domains Using Sequences of Harmonic Maps , 2010, Curves and Surfaces.

[30]  G. Liao Variational approach to grid generation , 1992 .

[31]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[32]  Jens Gravesen,et al.  Isogeometric Analysis and Shape Optimisation , 2010 .

[33]  D. Brenner,et al.  Estimated risks of radiation-induced fatal cancer from pediatric CT. , 2001, AJR. American journal of roentgenology.

[34]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[35]  M. Farrashkhalvat,et al.  Basic Structured Grid Generation: With an introduction to unstructured grid generation , 2003 .