Clustering and Information Retrieval

This volume contains recent developments in clustering and information retrieval, including clustering algorithms, evaluation methodologies, and architectures for information retrieval. It provides a survey of the state-of-the-art research in clustering and information retrieval. Audience: This volume is suitable for professionals and researchers in data mining and information retrieval. It is also appropriate for use in graduate courses.

[1]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[2]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[3]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[4]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[5]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[7]  Peter Willett Query-specific automatic document classification , 1985 .

[8]  Clement T. Yu Adaptive document clustering , 1985, SIGIR '85.

[9]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[10]  Peter Willett,et al.  Recent trends in hierarchic document clustering: A critical review , 1988, Inf. Process. Manag..

[11]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[12]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[13]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[14]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[15]  Stephen Grossberg,et al.  ART 2-A: an adaptive resonance algorithm for rapid category learning and recognition , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[16]  Hans-Peter Frei,et al.  Concept based query expansion , 1993, SIGIR.

[17]  W. Bruce Croft,et al.  An Association Thesaurus for Information Retrieval , 1994, RIAO.

[18]  Yiyu Yao,et al.  On modeling information retrieval with probabilistic inference , 1995, TOIS.

[19]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[20]  Michael Stonebraker,et al.  Database research: achievements and opportunities into the 1st century , 1996, SGMD.

[21]  Nikhil R. Pal,et al.  Cluster validation using graph theoretic concepts , 1997, Pattern Recognit..

[22]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[23]  Efraim Turban,et al.  Decision support systems and intelligent systems , 1997 .

[24]  Oren Etzioni,et al.  Web document clustering: a feasibility demonstration , 1998, SIGIR '98.

[25]  Yiyu Yao,et al.  Relational Interpretations of Neigborhood Operators and Rough Set Approximation Operators , 1998, Inf. Sci..

[26]  Arun N. Swami,et al.  Clustering Data Without Distance Functions , 1998, IEEE Data Eng. Bull..

[27]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[28]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[29]  Arthur Flexer,et al.  On the use of self-organizing maps for clustering and visualization , 1999, Intell. Data Anal..

[30]  Y. Yao Granular Computing : basic issues and possible solutions , 2000 .

[31]  José Carlos Príncipe,et al.  A new clustering evaluation function using Renyi's information potential , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[32]  Cory J. Butz,et al.  Granular Information Retrieval , 2000 .

[33]  Erhard Rahm,et al.  Data Cleaning: Problems and Current Approaches , 2000, IEEE Data Eng. Bull..

[34]  Y. Yao Information granulation and rough set approximation , 2001 .

[35]  Joseph M. Hellerstein,et al.  Potter's Wheel: An Interactive Data Cleaning System , 2001, VLDB.

[36]  Ji-Rong Wen,et al.  Clustering user queries of a search engine , 2001, WWW '01.

[37]  Michalis Vazirgiannis,et al.  A Data Set Oriented Approach for Clustering Algorithm Selection , 2001, PKDD.

[38]  Yiyu Yao,et al.  PagePrompter: An Intelligent Web Agent Created Using Data Mining Techniques , 2002, Rough Sets and Current Trends in Computing.

[39]  Ah-Hwee Tan,et al.  ART-C: a neural architecture for self-organization under constraints , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[40]  Yiyu Yao,et al.  Granular computing using information tables , 2002 .

[41]  Chun Lu,et al.  Field Similarity Algorithm , 2002, JCIS.

[42]  Y. Y. Yao,et al.  Information retrieval support systems , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[43]  Ji-Rong Wen,et al.  Query clustering using user logs , 2002, TOIS.

[44]  Yiyu Yao,et al.  Granular Computing for the Organization and Retrieval of Scientific XML Documents , 2002, Joint Conference on Information Sciences.

[45]  M. Crochemore,et al.  On-line construction of suffix trees , 2002 .

[46]  Thomas G. Dietterich,et al.  An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms , 1995, Machine Learning.