VisGraphNet: A complex network interpretation of convolutional neural features

Abstract We propose and investigate the use of visibility graphs to model the feature map of a neural network. Initially devised for studies on complex networks, we employ this type of model for classification of texture images. An alternative viewpoint provided by these graphs over the original data motivates this work. Experiments evaluate the performance of our method using four benchmark databases, namely, KTHTIPS-2b, FMD, UIUC, and UMD and in a practical problem, which is the identification of plant species using scanned images of their leaves. Our method was competitive with other state-of-the-art approaches both in terms of classification accuracy and computational time. Results confirm the potential of techniques used for data analysis in different contexts to give more meaningful interpretation to the use of neural networks in texture classification.

[1]  Y. Rui,et al.  Learning to Rank Using User Clicks and Visual Features for Image Retrieval , 2015, IEEE Transactions on Cybernetics.

[2]  Sofia Fellini,et al.  Propagation of toxic substances in the urban atmosphere: A complex network perspective , 2019, Atmospheric Environment.

[3]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[4]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[5]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[7]  Iasonas Kokkinos,et al.  Describing Textures in the Wild , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[9]  James R. Schott,et al.  Principles of Multivariate Analysis: A User's Perspective , 2002 .

[10]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[11]  Jun Yu,et al.  Hierarchical Deep Click Feature Prediction for Fine-Grained Image Recognition , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[13]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Saptorshi Ghosh,et al.  An efficient non-recursive algorithm for transforming time series to visibility graph , 2019, Physica A: Statistical Mechanics and its Applications.

[15]  Lucas Lacasa,et al.  From time series to complex networks: The visibility graph , 2008, Proceedings of the National Academy of Sciences.

[16]  Massimiliano Zanin,et al.  Characterising obstructive sleep apnea patients through complex networks , 2019, Chaos, Solitons & Fractals.

[17]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[18]  A. Rapoport Contribution to the theory of random and biased nets , 1957 .

[19]  Zunlei Feng,et al.  CU-Net: Component Unmixing Network for Textile Fiber Identification , 2019, International Journal of Computer Vision.

[20]  Edward H. Adelson,et al.  Material perception: What can you see in a brief glance? , 2010 .

[21]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[22]  Bo Li,et al.  Determining the influence factors of soil organic carbon stock in opencast coal-mine dumps based on complex network theory , 2019, CATENA.

[23]  Luciano da Fontoura Costa,et al.  Texture recognition based on diffusion in networks , 2016, Inf. Sci..

[24]  Odemir Martinez Bruno,et al.  Plant leaf identification using Gabor wavelets , 2009, Int. J. Imaging Syst. Technol..

[25]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[26]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[27]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Zhou Yu,et al.  Multimodal Transformer With Multi-View Visual Representation for Image Captioning , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[30]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2005, International Journal of Computer Vision.

[31]  Alexander E. Hramov,et al.  Multiscale interaction promotes chimera states in complex networks , 2019, Commun. Nonlinear Sci. Numer. Simul..

[32]  Jun Yu,et al.  Multimodal Face-Pose Estimation With Multitask Manifold Deep Learning , 2019, IEEE Transactions on Industrial Informatics.

[33]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[34]  B. Luque,et al.  Horizontal visibility graphs: exact results for random time series. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Iasonas Kokkinos,et al.  Deep Filter Banks for Texture Recognition, Description, and Segmentation , 2015, International Journal of Computer Vision.

[37]  PAUL,et al.  Molecular Size Distribution in Three Dimensional Polymers , 2022 .

[38]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Yanchun Zhang,et al.  Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy , 2016, IEEE Access.

[40]  Odemir Martinez Bruno,et al.  Discrete Schroedinger transform for texture recognition , 2016, Inf. Sci..

[41]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[42]  André Ricardo Backes,et al.  Texture analysis and classification: A complex network-based approach , 2013, Inf. Sci..

[43]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[44]  Paul J. Flory,et al.  Molecular Size Distribution in Three Dimensional Polymers. I. Gelation1 , 1941 .

[45]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[46]  Paul F. Whelan,et al.  Using filter banks in Convolutional Neural Networks for texture classification , 2016, Pattern Recognit. Lett..

[47]  Chun Chen,et al.  Learning deep classifiers with deep features , 2016, 2016 IEEE International Conference on Multimedia and Expo (ICME).

[48]  Daniel J. Brass,et al.  Network Analysis in the Social Sciences , 2009, Science.

[49]  Esa Rahtu,et al.  BSIF: Binarized statistical image features , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[50]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .