Texture classification using spectral histograms

Based on a local spatial/frequency representation,we employ a spectral histogram as a feature statistic for texture classification. The spectral histogram consists of marginal distributions of responses of a bank of filters and encodes implicitly the local structure of images through the filtering stage and the global appearance through the histogram stage. The distance between two spectral histograms is measured using chi(2)-statistic. The spectral histogram with the associated distance measure exhibits several properties that are necessary for texture classification. A filter selection algorithm is proposed to maximize classification performance of a given dataset. Our classification experiments using natural texture images reveal that the spectral histogram representation provides a robust feature statistic for textures and generalizes well. Comparisons show that our method produces a marked improvement in classification performance. Finally we point out the relationships between existing texture features and the spectral histogram, suggesting that the latter may provide a unified texture feature.

[1]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[2]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[3]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[4]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[5]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[8]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  E. Adelson,et al.  Early vision and texture perception , 1988, Nature.

[10]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[11]  Anil K. Jain,et al.  Texture Segmentation Using Voronoi Polygons , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[13]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[14]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[15]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[16]  Ibrahim M. Elfadel,et al.  Gibbs Random Fields, Cooccurrences, and Texture Modeling , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  B. Julesz Dialogues on Perception , 1994 .

[18]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[19]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[20]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[21]  Anil K. Jain,et al.  Learning Texture Discrimination Masks , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[23]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[24]  Robert Azencott,et al.  Texture Classification Using Windowed Fourier Filters , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[26]  Aleksandra Mojsilovic,et al.  On the Selection of an Optimal Wavelet Basis for Texture Characterization , 1998, ICIP.

[27]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Glenn Healey,et al.  Modeling and classifying color textures using random fields in a random environment , 1999, Pattern Recognit..

[29]  Xiuwen Liu,et al.  Computational investigation of feature extraction and image organization , 1999 .

[30]  Georgy L. Gimel'farb,et al.  Image Textures and Gibbs Random Fields , 1999, Computational Imaging and Vision.

[31]  Noel Cressie,et al.  Texture synthesis and pattern recognition for partially ordered Markov models , 1999, Pattern Recognit..

[32]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[33]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[34]  Song-Chun Zhu,et al.  Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a 'Trichromacy' Theory of Texture , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Anuj Srivastava,et al.  Probability Models for Clutter in Natural Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[37]  DeLiang Wang,et al.  Texture segmentation using Gaussian-Markov random fields and neural oscillator networks , 2001, IEEE Trans. Neural Networks.

[38]  DeLiang Wang,et al.  Image segmentation using local spectral histograms , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[39]  Anuj Srivastava,et al.  3D object recognition using perceptual components , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[40]  Deliang Wang,et al.  A spectral histogram model for texton modeling and texture discrimination , 2002, Vision Research.

[41]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Xiuwen Liu,et al.  Independent spectral representations of images for recognition. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  Song-Chun Zhu,et al.  Equivalence of Julesz Ensembles and FRAME Models , 2000, International Journal of Computer Vision.

[44]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[45]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .