Volume visualization based on statistical transfer-function spaces

It is a difficult task to design transfer functions for noisy data. In traditional transfer-function spaces, data values of different materials overlap. In this paper we introduce a novel statistical transfer-function space which in the presence of noise, separates different materials in volume data sets. Our method adaptively estimates statistical properties, i.e. the mean value and the standard deviation, of the data values in the neighborhood of each sample point. These properties are used to define a transfer-function space which enables the distinction of different materials. Additionally, we present a novel approach for interacting with our new transfer-function space which enables the design of transfer functions based on statistical properties. Furthermore, we demonstrate that statistical information can be applied to enhance visual appearance in the rendering process. We compare the new method with 1D, 2D, and LH transfer functions to demonstrate its usefulness.

[1]  Penny Rheingans,et al.  Texture-based Transfer Functions for Direct Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Raghu Machiraju,et al.  Statistical Computation of Salient ISO-Values , 2002, VisSym.

[3]  D. Goodin The cambridge dictionary of statistics , 1999 .

[4]  Raghu Machiraju,et al.  Salient iso-surface detection with model-independent statistical signatures , 2001, Proceedings Visualization, 2001. VIS '01..

[5]  Anna Vilanova,et al.  Visualization of boundaries in volumetric data sets using LH histograms , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[7]  Kwan-Liu Ma,et al.  Size-based Transfer Functions: A New Volume Exploration Technique , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  Kwan-Liu Ma,et al.  Interactive multi-scale exploration for volume classification , 2006, The Visual Computer.

[9]  Eduard Grller,et al.  Curvature-Based Transfer Functions for Direct Volume Rendering , 2000 .

[10]  David H. Laidlaw,et al.  Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms , 1997, IEEE Transactions on Medical Imaging.

[11]  Kwan-Liu Ma,et al.  Lighting transfer functions using gradient aligned sampling , 2004, IEEE Visualization 2004.

[12]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[13]  Anders Ynnerman,et al.  Multi-Dimensional Transfer Function Design Using Sorted Histograms , 2006, VG@SIGGRAPH.

[14]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[15]  Eduard Gröller,et al.  Moment curves , 2009, 2009 IEEE Pacific Visualization Symposium.

[16]  Anders Ynnerman,et al.  Local Histograms for Design of Transfer Functions in Direct Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[17]  Shigeru Muraki,et al.  Volume data and wavelet transforms , 1993, IEEE Computer Graphics and Applications.

[18]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[19]  Mohammad H. Ghavamnia,et al.  Direct rendering of Laplacian pyramid compressed volume data , 1995, Proceedings Visualization '95.

[20]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[21]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Marc Stamminger,et al.  Spatialized Transfer Functions , 2005, EuroVis.

[23]  Jing Wang,et al.  Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography , 2006, IEEE Transactions on Medical Imaging.

[24]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[25]  Tianhu Lei,et al.  Statistical approach to X-ray CT imaging and its applications in image analysis. I. Statistical analysis of X-ray CT imaging , 1992, IEEE Trans. Medical Imaging.

[26]  Markus Hadwiger,et al.  Interactive Volume Exploration for Feature Detection and Quantification in Industrial CT Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[27]  Stefan Bruckner,et al.  Instant Volume Visualization using Maximum Intensity Difference Accumulation , 2009, Comput. Graph. Forum.

[28]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..