Conditional risk based on multivariate hazard scenarios

We present a novel methodology to compute conditional risk measures when the conditioning event depends on a number of random variables. Specifically, given a random vector $$(\mathbf {X},Y)$$(X,Y), we consider risk measures that express the risk of Y given that $$\mathbf {X}$$X assumes values in an extreme multidimensional region. In particular, the considered risky regions are related to the AND, OR, Kendall and Survival Kendall hazard scenarios that are commonly used in environmental literature. Several closed formulas are considered (especially in the AND and OR scenarios). An application to spatial risk analysis involving real data is discussed.

[1]  A. Aghakouchak Extremes in a Changing Climate: Detection, Analysis and Uncertainty , 2013 .

[2]  Felice D'Alessandro,et al.  Practical guidelines for multivariate analysis and design in coastal and off-shore engineering , 2014 .

[3]  C. De Michele,et al.  Statistical characterization of temporal structure of storms , 2006 .

[4]  Alfonso J. Bello,et al.  Comparison of conditional distributions in portfolios of dependent risks , 2015 .

[5]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[6]  C. De Michele,et al.  Analytical calculation of storm volume statistics involving Pareto‐like intensity‐duration marginals , 2004 .

[7]  András Prékopa Multivariate value at risk and related topics , 2012, Ann. Oper. Res..

[8]  M. E. Johnson,et al.  Generalized Burr-Pareto-Logistic distributions with applications to a uranium exploration data set , 1986 .

[9]  Andreas H. Hamel,et al.  Duality for Set-Valued Measures of Risk , 2010, SIAM J. Financial Math..

[10]  Gianfausto Salvadori,et al.  Bivariate return periods via 2-Copulas , 2004 .

[11]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .

[12]  Ni-Bin Chang,et al.  Copula‐based flood frequency (COFF) analysis at the confluences of river systems , 2009 .

[13]  Jun Yan,et al.  Package R copula : "Multivariate dependence with copulas", version 0.9-7 , 2011 .

[14]  Areski Cousin,et al.  On multivariate extensions of Value-at-Risk , 2011, J. Multivar. Anal..

[15]  Jan-Frederik Mai,et al.  Constructing hierarchical Archimedean copulas with Lévy subordinators , 2010, J. Multivar. Anal..

[16]  Giuseppe Passoni,et al.  A multivariate model of sea storms using copulas , 2007 .

[17]  C. Sempi,et al.  Principles of Copula Theory , 2015 .

[18]  Fabrizio Durante,et al.  On the return period and design in a multivariate framework , 2011 .

[19]  Laura Read,et al.  Reliability, return periods, and risk under nonstationarity , 2015 .

[20]  T. Stocker,et al.  Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the Intergovernmental Panel on Climate Change. , 2012 .

[21]  Francesco Serinaldi,et al.  Dismissing return periods! , 2015, Stochastic Environmental Research and Risk Assessment.

[22]  Amir AghaKouchak,et al.  Entropy–Copula in Hydrology and Climatology , 2014 .

[23]  Jun Yan,et al.  A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems , 2011, Stat. Comput..

[24]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[25]  Christian Genest,et al.  A copula‐based risk aggregation model , 2015 .

[26]  Felice D'Alessandro,et al.  Practical guidelines for the multivariate assessment of the structural risk in coastal and off-shore engineering , 2015 .

[27]  Georg Mainik,et al.  On dependence consistency of CoVaR and some other systemic risk measures , 2012, 1207.3464.

[28]  B. Rüdiger,et al.  Analysing systemic risk contribution using a closed formula for conditional value at risk through copula , 2015 .

[29]  Yarema Okhrin,et al.  On the structure and estimation of hierarchical Archimedean copulas , 2013 .

[30]  Fabrizio Durante,et al.  On the construction of multivariate extreme value models via copulas , 2009 .

[31]  CoVaR of families of copulas , 2017 .

[32]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[33]  E. D. Bernardino,et al.  On multivariate extensions of the conditional Value-at-Risk measure , 2015 .

[34]  Fabio Spizzichino,et al.  Kendall distributions and level sets in bivariate exchangeable survival models , 2009, Inf. Sci..

[35]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[36]  H. Joe Dependence Modeling with Copulas , 2014 .

[37]  R. Pachauri Managing the Risks of Extreme Events and Disasters , 2012 .

[38]  E. D. Bernardino,et al.  Estimation of extreme quantiles conditioning on multivariate critical layers , 2016 .

[39]  Giulio Girardi,et al.  Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR , 2012 .

[40]  P. Jaworski On Conditional Value at Risk (CoVaR) for tail-dependent copulas , 2017 .

[41]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[42]  Eike Christian Brechmann,et al.  Hierarchical Kendall copulas: Properties and inference , 2012, 1202.1998.

[43]  Andrea Petroselli,et al.  Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation , 2012 .

[44]  Claudia Czado,et al.  Conditional quantiles and tail dependence , 2015, J. Multivar. Anal..

[45]  Mauro Bernardi,et al.  Bayesian Tail Risk Interdependence Using Quantile Regression , 2015 .

[46]  Jenq-Tzong Shiau,et al.  Return period of bivariate distributed extreme hydrological events , 2003 .

[47]  Fabrizio Durante,et al.  A multivariate copula‐based framework for dealing with hazard scenarios and failure probabilities , 2016 .

[48]  Harry Joe,et al.  Multivariate models for dependent clusters of variables with conditional independence given aggregation variables , 2016, Comput. Stat. Data Anal..

[49]  M. E. Johnson,et al.  A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .

[50]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .