Subsurface urban heat islands in German cities.

Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface.

[1]  Allan D. Woodbury,et al.  Subsurface heat flow in an urban environment , 2004 .

[2]  Huang,et al.  Climate change record in subsurface temperatures: A global perspective , 1998, Science.

[3]  Shinji Kaneko,et al.  Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand. , 2009, The Science of the total environment.

[4]  Allan D. Woodbury,et al.  Urban heat island in the subsurface , 2007 .

[5]  T. Oke The urban energy balance , 1988 .

[6]  J. Unger,et al.  Simulation of the mean urban heat island using 2D surface parameters: empirical modelling, verification and extension , 2009 .

[7]  P. Blum,et al.  Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions , 2011 .

[8]  Theo Simon,et al.  Geologie von Baden-Württemberg , 2011 .

[9]  D. R. Williamson,et al.  Disturbances of temperature‐depth profiles due to surface climate change and subsurface water flow: 2. An effect of step increase in surface temperature caused by forest clearing in southwest western Australia , 1999 .

[10]  H. Beltrami,et al.  Subsurface thermal effects of land use changes , 2005 .

[11]  Graeme Maidment,et al.  Underground railway environment in the UK. Part 2: Investigation of heat load , 2004 .

[12]  A. Lachenbruch,et al.  Changing Climate: Geothermal Evidence from Permafrost in the Alaskan Arctic , 1986, Science.

[13]  H. Brandl Energy foundations and other thermo-active ground structures , 2006 .

[14]  Maria Beier Urbane Beeinflussung des Grundwassers: Stoffemissionen und -immissionen am Beispiel Darmstadts , 2008 .

[15]  J. Epting,et al.  Thermal management of an urban groundwater body , 2012 .

[16]  O. Yetemen,et al.  Local warming of groundwaters caused by the urban heat island effect in Istanbul, Turkey , 2009 .

[17]  Martin O. Saar,et al.  Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields , 2011 .

[18]  Shaopeng Huang,et al.  Temperature trends over the past five centuries reconstructed from borehole temperatures , 2000, Nature.

[19]  W. Kuttler,et al.  The dependence of the urban heat island intensity on latitude A statistical approach , 2005 .

[20]  M. Taniguchi,et al.  Effects of urbanization and groundwater flow on subsurface temperature in three megacities in Japan , 2005 .

[21]  M. Taniguchi Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles , 1993 .

[22]  Makoto Taniguchi,et al.  Detecting urbanization effects on surface and subsurface thermal environment--a case study of Osaka. , 2009, The Science of the total environment.

[23]  L. Bodri,et al.  Climate changes of the last two millennia inferred from borehole temperatures: results from the Czech Republic — Part II , 1997 .

[24]  Vittorio Verda,et al.  Development of the thermally affected zone (TAZ) around a groundwater heat pump (GWHP) system: A sensitivity analysis , 2012 .

[25]  J. Smerdon,et al.  Continental heat gain in the global climate system , 2001 .

[26]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[27]  P. Ciais,et al.  Response to Comment on ``Surface Urban Heat Island Across 419 Global Big Cities'' , 2012 .

[28]  D. Chapman,et al.  A geothermal climate change observatory: First year results from Emigrant Pass in northwest Utah , 1996 .

[29]  T. Kohl Palaeoclimatic temperature signals — can they be washed out? , 1998 .

[30]  M. Taniguchi Anthropogenic effects on subsurface temperature in Bangkok , 2006 .

[31]  A. Tiehm,et al.  Quantification of NA processes for the CAH-contamination in Karlsruhe-Ost/Killisfeld with the help of a groundwater model , 2007 .

[32]  J. Smerdon,et al.  Daily, seasonal, and annual relationships between air and subsurface temperatures , 2006 .

[33]  Grades Doktor-Ingenieur,et al.  Untersuchungen zum langfristigen Verhalten von Siedlungsabfalldeponien , 2000 .

[34]  Nina Schwarz,et al.  Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures , 2011 .

[35]  Stanley A. Changnon,et al.  A Rare Long Record of Deep Soil Temperatures Defines Temporal Temperature Changes and an Urban Heat Island , 1999 .

[36]  Nico Goldscheider,et al.  Hydrogeologisches Konzeptmodell von München: Grundlage für die thermische Grundwassernutzung , 2012, Grundwasser.

[37]  Philipp Blum,et al.  Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany , 2011 .

[38]  Comment on "Surface urban heat island across 419 global big cities". , 2012, Environmental science & technology.

[39]  K. Zhu,et al.  The geothermal potential of urban heat islands , 2010 .

[40]  Peter Bayer,et al.  International legal status of the use of shallow geothermal energy , 2010 .

[41]  David Banks,et al.  Regional distribution of ground temperature in the Chalk aquifer of London, UK , 2009 .

[42]  Jong‐Jin Baik,et al.  Daily maximum urban heat island intensity in large cities of Korea , 2004 .

[43]  Craig A. Taylor,et al.  Shallow groundwater temperature response to climate change and urbanization , 2009 .

[44]  T. Oke City size and the urban heat island , 1973 .

[45]  M. Taniguchi,et al.  Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities , 2007 .

[46]  Ulrich Corsmeier,et al.  Effects of Urban Land Use on Surface Temperature in Berlin: Case Study , 2007 .

[47]  A. F. Birch The effects of Pleistocene climatic variations upon geothermal gradients , 1948 .

[48]  M. Taniguchi,et al.  Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan , 2005 .