The McDonald Weibull model

For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets.

[1]  G. S. Mudholkar,et al.  The Inverse Gaussian Models: Analogues of Symmetry, Skewness and Kurtosis , 2002 .

[2]  Saralees Nadarajah,et al.  On the Moments of the Exponentiated Weibull Distribution , 2005 .

[3]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[4]  Kristin L. Sainani,et al.  Logistic Regression , 2014, PM & R : the journal of injury, function, and rehabilitation.

[5]  Narayanaswamy Balakrishnan,et al.  A General Purpose Approximate Goodness-of-Fit Test , 1995 .

[6]  Amit Choudhury,et al.  A Simple Derivation of Moments of the Exponentiated Weibull Distribution , 2005 .

[7]  Manisha Pal,et al.  Exponentiated Weibull distribution , 2006 .

[8]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[9]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[10]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[11]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[12]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[13]  Y. H. Abdelkader,et al.  Computing the moments of order statistics from nonidentical random variables , 2004 .

[14]  James B. McDonald,et al.  Some Generalized Functions for the Size Distribution of Income , 1984 .

[15]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[16]  Gauss M. Cordeiro,et al.  The log-beta Weibull regression model with application to predict recurrence of prostate cancer , 2013 .

[17]  G. S. Mudholkar,et al.  IG-symmetry and R-symmetry: Interrelations and applications to the inverse Gaussian theory , 2007 .

[18]  Saralees Nadarajah,et al.  The Exponentiated Gamma Distribution with Application to Drought Data , 2007 .

[19]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[20]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[21]  Gauss M. Cordeiro,et al.  The negative binomial–beta Weibull regression model to predict the cure of prostate cancer , 2012 .

[22]  Norman C. Beaulieu,et al.  Performance analysis of digital modulations on Weibull fading channels , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[23]  Samuel Kotz,et al.  On some recent modifications of Weibull distribution , 2005, IEEE Transactions on Reliability.

[24]  Felix Famoye,et al.  Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .

[25]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[26]  B. Efron Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve , 1988 .

[27]  Necip Doganaksoy,et al.  Weibull Models , 2004, Technometrics.

[28]  Gauss M. Cordeiro,et al.  The log-exponentiated Weibull regression model for interval-censored data , 2010, Comput. Stat. Data Anal..

[29]  Saralees Nadarajah,et al.  The Kumaraswamy Weibull distribution with application to failure data , 2010, J. Frankl. Inst..

[30]  E. M. Wright,et al.  The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .

[31]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[32]  Gauss M. Cordeiro,et al.  A Log-Linear Regression Model for the Beta-Weibull Distribution , 2011, Commun. Stat. Simul. Comput..

[33]  Pushpa L. Gupta,et al.  Modeling failure time data by lehman alternatives , 1998 .

[34]  Gauss M. Cordeiro,et al.  A new family of generalized distributions , 2011 .