Multiple risk measures for multivariate dynamic heavy–tailed models

The dynamic evolution of tail–risk interdependence among institutions is of primary importance when extreme events such as financial crisis occur. In this paper we introduce two new risk measures that generalise the Conditional Value–at–Risk and the Conditional Expected Shortfall in a multiple setting. The proposed risk measures aim to capture extreme tail co–movements among several multivariate connected market participants experiencing contemporaneous distress instances. Analytical expressions for the risk measures are obtained under a parametric model that postulates a joint dynamic evolution of the underlying institutions' losses and gains. We consider a multivariate Student–t version of Markov Switching models as a robust alternative to the usual multivariate Gaussian specification, accounting for heavy–tails and time varying non–linear correlations. An empirical application to US banks is considered to show that our model–based risk measurement framework provides a better characterisation of the dynamic evolution of the overall risk of a financial system and a more complete picture of how the risk spreads among institutions.

[1]  Tobias Rydén,et al.  EM versus Markov chain Monte Carlo for estimation of hidden Markov models: a computational perspective , 2008 .

[2]  Christophe Chesneau,et al.  Markov-switching asset allocation: Do profitable strategies exist? , 2011 .

[3]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[4]  Kostas Tsatsaronis,et al.  Attributing Systemic Risk to Individual Institutions , 2010 .

[5]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[6]  Carlos Castro,et al.  Measuring and testing for the systemically important financial institutions , 2014 .

[7]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[8]  Xin Huang,et al.  Systemic Risk Contributions , 2011 .

[9]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[10]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[11]  Enrique Sentana,et al.  Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models With Student t Innovations , 2003 .

[12]  Mauro Bernardi,et al.  Risk measures for Skew Normal mixtures , 2013 .

[13]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[14]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[15]  Jan Bulla,et al.  Stylized facts of financial time series and hidden semi-Markov models , 2006, Comput. Stat. Data Anal..

[16]  M. Bernardi,et al.  Interconnected risk contributions: an heavy-tail approach to analyse US financial sectors , 2014, 1401.6408.

[17]  Richard D. F. Harris,et al.  The Empirical Distribution of UK and US Stock Returns , 2001 .

[18]  Xin Huang,et al.  Assessing the Systemic Risk of a Heterogeneous Portfolio of Banks during the Recent Financial Crisis , 2009 .

[19]  CoVaR of families of copulas , 2017 .

[20]  A. Farcomeni,et al.  A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure , 2009 .

[21]  Xin Zhang,et al.  Conditional Euro Area Sovereign Default Risk , 2013 .

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  Roland Füss,et al.  Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach , 2012, Journal of Financial and Quantitative Analysis.

[24]  L. Shapley A Value for n-person Games , 1988 .

[25]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .

[26]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[27]  Andrew Ang,et al.  How Regimes Affect Asset Allocation , 2006 .

[28]  F. Lagona,et al.  Maximum likelihood estimation of bivariate circular hidden Markov models from incomplete data , 2013 .

[29]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[30]  Mathias Drehmann,et al.  Measuring the Systemic Importance of Interconnected Banks , 2011 .

[31]  Giulio Girardi,et al.  Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR , 2012 .

[32]  Massimo Guidolin,et al.  Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns , 2005 .

[33]  Zhili Cao,et al.  Multi-CoVaR and Shapley value: A Systemic Risk Measure , 2014 .

[34]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[35]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[36]  Nikolaus Hautsch,et al.  Financial Network Systemic Risk Contributions , 2013 .

[37]  W. Härdle,et al.  Statistical Tools for Finance and Insurance , 2003 .

[38]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[39]  Przemyslaw Dymarski,et al.  Hidden Markov Models, Theory and Applications , 2011 .

[40]  Skew mixture models for loss distributions: a Bayesian approach , 2012 .

[41]  Robert F. Engle,et al.  Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks † , 2012 .

[42]  Jan Bulla,et al.  Hidden Markov models with t components. Increased persistence and other aspects , 2011 .

[43]  Geoffrey J. McLachlan,et al.  Robust mixture modelling using the t distribution , 2000, Stat. Comput..

[44]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[45]  Jean-Yves Gnabo,et al.  Assessing the Contribution of Banks, Insurance and Other Financial Services to Systemic Risk , 2014 .

[46]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[47]  Mauro Bernardi,et al.  Bayesian Tail Risk Interdependence Using Quantile Regression , 2015 .

[48]  S. Nadarajah,et al.  Estimation methods for expected shortfall , 2014 .

[49]  Denis Pelletier,et al.  Regime Switching for Dynamic Correlations , 2006 .

[50]  Robert F. Engle,et al.  Volatility, Correlation and Tails for Systemic Risk Measurement , 2010 .

[51]  A. Farcomeni,et al.  A note on the mixture transition distribution and hidden Markov models , 2010 .

[52]  C. Acerbi Spectral measures of risk: A coherent representation of subjective risk aversion , 2002 .

[53]  Shy Shoham,et al.  Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions , 2002, Pattern Recognit..

[54]  A. Lo,et al.  A Survey of Systemic Risk Analytics , 2012 .

[55]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[56]  Jedrzej Bialkowski,et al.  Modelling Returns on Stock Indices for Western and Central European Stock Exchanges - a Markov Switching Approach , 2004 .

[57]  C. D. Sinclair,et al.  An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000 , 2004 .

[58]  Systemic Risk in Europe , 2015 .

[59]  Viral V. Acharya,et al.  Restoring financial stability : how to repair a failed system , 2009 .

[60]  J. Geweke,et al.  Hierarchical Markov Normal Mixture Models with Applications to Financial Asset Returns , 2007 .

[61]  Alfonso J. Bello,et al.  Comparison of conditional distributions in portfolios of dependent risks , 2015 .

[62]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[63]  Manfred Jaeger-Ambrozewicz Closed Form Solutions of Measures of Systemic Risk , 2010, 1211.4173.

[64]  Christophe Hurlin,et al.  Where the Risks Lie: A Survey on Systemic Risk , 2015 .

[65]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[66]  T. Rydén,et al.  Stylized Facts of Daily Return Series and the Hidden Markov Model , 1998 .

[67]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[68]  A. Lo,et al.  Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors , 2011 .