Gaussian quadrature formulae of the third kind for Cauchy principal value integrals: basic properties and error estimates

Abstract Let ∏n−1[f] be the polynomial of degree n−1 interpolating the function f at the points x1,x2, …,xn with Pn(xi) = 0, i.e., at the nodes of the classical Gaussian quadrature formula. For the numerical approximation of the Cauchy principal value integral ⨍ 1 −1 ƒ(x)(x−λ) −1 d x with λ ∈ (−1,1) and f ∈ C1[−1,1], we present the quadrature formula Qn+1G3 given by Q n+1 G3 [ƒ;λ]:= ∫ − 1 π n−1 [ƒ](x)−π n−1 [ƒ](λ) x−λ d x+ƒ(λ)1 n 1−λ 1+λ . We show that this quadrature formula does not have the disadvantages of the other two well-known quadrature formulae based on the same set of nodes. In particular, we prove that the sequence ( based on the same set of nodes. In particular, we prove that the sequence (Qn + 1G3[f; λ]) converges to the true value of the integral uniformly for all λ ∈ (−1, 1). We give estimates for the error term. Furthermore, we state some relations connecting the present quadrature formula to the previously introduced formulae.

[1]  M. Kuetz A note on the mean convergence of Lagrange interpolation , 1982 .

[2]  G. Criscuolo,et al.  Formule gaussiane per il calcolo di integrali a valor principale secondo Cauchy e loro convergenza , 1985 .

[3]  P. Rabinowitz On an interpolatory product rule for evaluating Cauchy principal value integrals , 1989 .

[4]  Tatsuo Torii,et al.  Hilbert and Hadamard transforms by generalized Chebyshev expansion , 1994 .

[5]  E. Cheney Introduction to approximation theory , 1966 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  N. Ioakimidis Further convergence results for two quadrature rules for Cauchy type principal value integrals , 1982 .

[8]  David Elliott,et al.  Gauss type quadrature rules for Cauchy principal value integrals , 1979 .

[9]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .

[10]  Kai Diethelm,et al.  Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals , 1994 .

[11]  Giovanni Monegato,et al.  On the weights of certain quadratures for the numerical evaluation of Cauchy principal value integrals and their derivatives , 1986 .

[12]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[13]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[14]  David Elliott,et al.  On the convergence of Hunter's quadrature rule for Cauchy principal value integrals , 1979 .

[15]  P. Vértesi,et al.  Some Erdös-Feldheim type theorems on mean convergence of Lagrange interpolation , 1983 .

[16]  David Elliott,et al.  On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals , 1974 .

[17]  Tatsuo Torii,et al.  An automatic quadrature for Cauchy principal value integrals , 1991 .

[18]  Giuseppe Mastroianni,et al.  On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals , 1987 .

[19]  D. Hunter,et al.  Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals , 1972 .

[20]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[21]  David Elliott,et al.  An algorithm for the numerical evaluation of certain Cauchy principal value integrals , 1972 .

[22]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[23]  Kai Diethelm,et al.  Non-optimality of certain quadrature rules for Cauchy principal value integrals , 1994 .

[24]  Kai Diethelm,et al.  Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals , 1996 .

[25]  Allan Pinkus,et al.  Progress in Approximation Theory , 1991 .

[26]  P. Butzer,et al.  E. B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences , 1983 .

[27]  A note on mean convergence of Lagrange interpolation , 1981 .

[28]  A. I. Kalandiya Mathematical Methods of Two-Dimensional Elasticity. , 1975 .