First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole

In this paper we provide a first physical interpretation for the Event Horizon Telescope's (EHT) 2017 observations of Sgr A*. Our main approach is to compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 μm, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i ≤ 30°. They have accretion rate (5.2–9.5) × 10−9 M ⊙ yr−1, bolometric luminosity (6.8–9.2) × 1035 erg s−1, and outflow power (1.3–4.8) × 1038 erg s−1. We also find that all models with i ≥ 70° fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 μm flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations.

Chih-Wei L. Huang | P. K. Leung | Alexander W. Raymond | K. Souccar | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | S. Ikeda | B. Benson | J. Carlstrom | D. Michalik | A. Nadolski | D. James | P. Koch | L. Rezzolla | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | Aviad Levis | F. Schloerb | E. Fomalont | Jongsoo Kim | K. Haworth | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | A. Broderick | R. Blundell | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | J. Zensus | D. Haggard | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | I. Myserlis | M. Sasada | D. Pesce | P. Tiede | H. Pu | Dong-Jin Kim | A. Marscher | S. Jorstad | U. Pen | T. Crawford | D. Bintley | D. Ward-Thompson | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | M. Bremer | R. Brissenden | S. Britzen | T. Bronzwaer | Chi-kwan Chan | I. Cho | P. Christian | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | B. Georgiev | K. Hada | S. Issaoun | M. Janssen | B. Jeter | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | A. Roshanineshat | H. Rottmann | C. Ruszczyk | K. Rygl | S. Sánchez | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | N. Wex | R. Wharton | M. Wielgus | G. Wong | Z. Younsi | U. Bach | S. Dzib | J. Farah | A. Gómez-Ruiz | J. Neilsen | M. Nowak | H. Parsons | Ignacio Ruiz | P. Yamaguchi | H. Ford | A. Cruz-Osorio | H. V. van Langevelde | J. Conway | M. De Laurentis | Michael Kramer | F. Özel | R. Rao | I. V. van Bemmel | D. V. van Rossum | K. Wiik | William T. Freeman | C. Kramer | M. Bauböck | A. Jiménez-Rosales | D. Yoon | G. Witzel | N. Marchili | H. Boyce | R. Lico | A. Nathanail | R. Emami | J. Schonfeld | A. Tetarenko | Vedant Dhruv | S. Ressler | Angelo Ricarte | C. Romero-Cañizales | G. Musoke | Z. Li 李 | Geoff C. Bower | Richard Anantua | D. Sánchez-Argüelles | C. Ceccobello | R. Qiu | A. Fuentes | E. Traianou | Xiaopeng Cheng | Greg Lindahl | Daeyoung Lee | Alejandro Mus | Juan Carlos Algaba | D. Broguiere | Y. Chen 陈 | Nicholas S. Conroy | M. Gu 顾 | L. Ho 何 | Lei 磊 Huang 黄 | C. M. Violette Impellizzeri | Wu 悟 Jiang 江 | Abhishek V. Joshi | Prashant Kocherlakota | Yutaro Kofuji | M. Lisakov | J. Liu 刘 | R. Lu 路 | J. Mao 毛 | Santiago Navarro Fuentes | Georgios Filippos Paraschos | F. M. Pötzl | M. Sánchez-Portal | Kaushik Satapathy | Z. Shen 沈 | J. Vos | Q. Wu 吴 | Y. Yuan 袁 | Shuo Zhang | Sandra Bustamante | Y. Cui 崔 | S. Dougal | J. Gómez | D. Heumann | N. Bella | Shan-Shan 杉杉 Zhao 赵 | Tin Lok Chan | C. White | M. Nakamura | Event Horizon Telescope Collaboration | C. Goddi | J. Oh | G. Ortiz-Léon | Lijing Shao | H. Sun 孙 | J. Wagner | F. Yuan 袁 | Matthew A. Turk | M. Wondrak | G. Bower | R. García | M. Kramer | A. Raymond | P. Leung | L. Huang 黄 | David Ball | Shiro Ikeda | Aleksandar PopStefanija

[1]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole , 2022, The Astrophysical Journal Letters.

[2]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration , 2022, The Astrophysical Journal Letters.

[3]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric , 2022, The Astrophysical Journal Letters.

[4]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass , 2022, The Astrophysical Journal Letters.

[5]  C. Gammie,et al.  PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion , 2022, 2202.11721.

[6]  H. Falcke,et al.  Impact of non-thermal particles on the spectral and structural properties of M87 , 2021, Astronomy & Astrophysics.

[7]  A. Tchekhovskoy,et al.  Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection , 2021, The Astrophysical Journal Letters.

[8]  E. Quataert,et al.  The Effects of Tilt on the Time Variability of Millimeter and Infrared Emission from Sagittarius A* , 2021, The Astrophysical Journal.

[9]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[11]  C. Gammie,et al.  iharm3D: Vectorized General Relativistic Magnetohydrodynamics , 2021, J. Open Source Softw..

[12]  C. Gammie,et al.  Updated Transfer Coefficients for Magnetized Plasmas , 2021, The Astrophysical Journal.

[13]  L. Rezzolla,et al.  Comparison of the ion-to-electron temperature ratio prescription: GRMHD simulations with electron thermodynamics , 2021, Monthly Notices of the Royal Astronomical Society.

[14]  H. Falcke,et al.  Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz , 2021, The Astrophysical Journal.

[15]  Daniel C. M. Palumbo,et al.  Polarimetric Properties of Event Horizon Telescope Targets from ALMA , 2021, The Astrophysical Journal Letters.

[16]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[17]  M. Mościbrodzka,et al.  Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole , 2021, Monthly Notices of the Royal Astronomical Society.

[18]  A. Loeb,et al.  Positron Effects on Polarized Images and Spectra from Jet and Accretion Flow Models of M87* and Sgr A* , 2021, The Astrophysical Journal.

[19]  A. Beloborodov,et al.  Radiative Turbulent Flares in Magnetically Dominated Plasmas , 2020, The Astrophysical Journal.

[20]  R. Narayan,et al.  Reconnection-driven Particle Acceleration in Relativistic Shear Flows , 2020, The Astrophysical Journal.

[21]  C. Gammie,et al.  Pair Drizzle around Sub-Eddington Supermassive Black Holes , 2020, 2012.04658.

[22]  C. Gammie,et al.  Disks as Inhomogeneous, Anisotropic Gaussian Random Fields , 2020, 2011.07151.

[23]  A. Tchekhovskoy,et al.  Spectral and imaging properties of Sgr A* from high-resolution 3D GRMHD simulations with radiative cooling , 2020, Monthly Notices of the Royal Astronomical Society.

[24]  P. T. de Zeeuw,et al.  Dynamically important magnetic fields near the event horizon of Sgr A* , 2020, Astronomy & Astrophysics.

[25]  Daniel C. M. Palumbo,et al.  Verification of Radiative Transfer Schemes for the EHT , 2020, The Astrophysical Journal.

[26]  K. Toma,et al.  Comprehensive Analysis of Magnetospheric Gaps around Kerr Black Holes Using 1D GRPIC Simulations , 2020, The Astrophysical Journal.

[27]  C. Gammie,et al.  Bremsstrahlung in GRMHD Models of Accreting Black Holes , 2020, The Astrophysical Journal.

[28]  E. Quataert,et al.  Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds , 2020, The Astrophysical Journal.

[29]  P. T. de Zeeuw,et al.  The flux distribution of Sgr A* , 2020, Astronomy & Astrophysics.

[30]  A. Tchekhovskoy,et al.  A parameter survey of Sgr A* radiative models from GRMHD simulations with self-consistent electron heating , 2020, 2004.00019.

[31]  B. Ripperda,et al.  Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks , 2020, The Astrophysical Journal.

[32]  L. Rezzolla,et al.  Plasmoid formation in global GRMHD simulations and AGN flares , 2020, 2002.01777.

[33]  C. Fromm,et al.  Modelling the polarised emission from black holes on event horizon-scales , 2019, Proceedings of the International Astronomical Union.

[34]  E. Quataert,et al.  The surprisingly small impact of magnetic fields on the inner accretion flow of Sagittarius A* fueled by stellar winds , 2020, 2001.04469.

[35]  Luis Henry Quiroga-Nuñez,et al.  Trigonometric Parallaxes of High-mass Star-forming Regions: Our View of the Milky Way , 2019, The Astrophysical Journal.

[36]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[37]  S. Noble,et al.  GR-MHD Disk Winds and Jets from Black Holes and Resistive Accretion Disks , 2019, The Astrophysical Journal.

[38]  L. Rezzolla,et al.  General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations , 2019, The Astrophysical Journal Supplement Series.

[39]  L. Rezzolla,et al.  Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code , 2019, Astronomy & Astrophysics.

[40]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[41]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[42]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[43]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[44]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[45]  E. Quataert,et al.  Tilted Disks around Black Holes: A Numerical Parameter Survey for Spin and Inclination Angle , 2019, The Astrophysical Journal.

[46]  H. Falcke,et al.  The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA , 2019, The Astrophysical Journal.

[47]  E. Quataert,et al.  Accretion of magnetized stellar winds in the Galactic centre: implications for Sgr A* and PSR J1745−2900 , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[48]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[49]  Kazunori Akiyama,et al.  The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths , 2018, The Astrophysical Journal.

[50]  E. Quataert,et al.  Two-temperature GRRMHD Simulations of M87 , 2018, The Astrophysical Journal.

[51]  A. Broderick,et al.  Probing the Innermost Accretion Flow Geometry of Sgr A* with Event Horizon Telescope , 2018, The Astrophysical Journal.

[52]  Feng Gao,et al.  A Detection of Sgr A* in the Far Infrared , 2018, The Astrophysical Journal.

[53]  G. Fazio,et al.  Variability Timescale and Spectral Index of Sgr A* in the Near Infrared: Approximate Bayesian Computation Analysis of the Variability of the Closest Supermassive Black Hole , 2018, The Astrophysical journal.

[54]  E. Quataert,et al.  Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds , 2018, 1805.00474.

[55]  C. Fendt,et al.  Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems , 2018, 1804.09652.

[56]  A. Levinson,et al.  Particle-in-cell simulations of pair discharges in a starved magnetosphere of a Kerr black hole , 2018, Astronomy & Astrophysics.

[57]  Y. Mizuno,et al.  The Black Hole Accretion Code: adaptive mesh refinement and constrained transport , 2018, 1802.00860.

[58]  R. Fonseca,et al.  Fully Kinetic Large-scale Simulations of the Collisionless Magnetorotational Instability , 2018, The Astrophysical Journal.

[59]  College Park,et al.  Angular momentum transport in thin magnetically arrested discs , 2017, 1709.10113.

[60]  Q. Yuan,et al.  A systematic Chandra study of Sgr A⋆: II. X-ray flare statistics , 2017, 1709.03709.

[61]  G. Werner,et al.  Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection , 2016, 1612.04493.

[62]  C. Gammie,et al.  IPOLE - semi-analytic scheme for relativistic polarized radiative transport , 2017, 1712.03057.

[63]  R. Narayan,et al.  Electron and Proton Heating in Transrelativistic Magnetic Reconnection , 2017, 1708.04627.

[64]  Berkeley,et al.  Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations , 2017, 1707.06619.

[65]  A. Tchekhovskoy,et al.  How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? , 2017, 1706.01533.

[66]  A. Tchekhovskoy,et al.  The disc-jet symbiosis emerges: Modelling the emission of Sagittarius A* with electron thermodynamics , 2016, 1611.09365.

[67]  R. Narayan,et al.  Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity , 2016, 1605.03184.

[68]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[69]  D. Psaltis,et al.  GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A* , 2016, 1601.06799.

[70]  H. F. Astrophysics,et al.  Probing the Magnetic Field Structure in on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations , 2016, 1601.05550.

[71]  E. Quataert,et al.  Evolution of accretion discs around a kerr black hole using extended magnetohydrodynamics , 2015, 1511.04445.

[72]  P. Ho,et al.  Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.

[73]  James M. Stone,et al.  AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT , 2015, 1511.00943.

[74]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[75]  A. Tchekhovskoy,et al.  Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion , 2015, 1509.04717.

[76]  L. Sironi,et al.  Relativistic Jets Shine through Shocks or Magnetic Reconnection , 2015, 1502.01021.

[77]  Charles F. Gammie,et al.  Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A , 2014, 1408.4743.

[78]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[79]  H. Falcke,et al.  Coupled jet-disk model for Sagittarius A*: explaining the flat-spectrum radio core with GRMHD simulations of jets , 2013, 1310.4951.

[80]  J. Cuadra,et al.  Dissecting X-ray–Emitting Gas Around the Center of Our Galaxy , 2013, Science.

[81]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[82]  Diana Napoli,et al.  UNIVERSITA ’ DI NAPOLI FEDERICO II , 2013 .

[83]  Z. Younsi,et al.  General relativistic radiative transfer: formulation and emission from structured tori around black holes , 2012, 1207.4234.

[84]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[85]  P. Anninos,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE , 2012, 1204.5538.

[86]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[87]  G. Howes A prescription for the turbulent heating of astrophysical plasmas , 2010, 1009.4212.

[88]  C. Gammie,et al.  grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT , 2009, 0909.0708.

[89]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[90]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[91]  Jessica R. Lu,et al.  A Constant Spectral Index for Sagittarius A* during Infrared/X-Ray Intensity Variations , 2007, 0706.1782.

[92]  Astrophysics,et al.  The Submillimeter Polarization of Sgr A , 2006, astro-ph/0607432.

[93]  H. Falcke,et al.  The Rotation Measure and 3.5 Millimeter Polarization of Sagittarius A* , 2006, astro-ph/0606381.

[94]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[95]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[96]  G. T'oth,et al.  HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics , 2003, astro-ph/0301509.

[97]  R. Narayan,et al.  Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows , 2003, astro-ph/0301402.

[98]  H. Falcke,et al.  A Jet-ADAF model for Sgr A* , 2001, astro-ph/0112464.

[99]  S. Komissarov Direct numerical simulations of the Blandford–Znajek effect , 2001 .

[100]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[101]  R. Narayan,et al.  Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows , 2000, astro-ph/0004195.

[102]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[103]  J. Hawley Global Magnetohydrodynamical Simulations of Accretion Tori , 1999, astro-ph/9907385.

[104]  Kazunari Shibata,et al.  Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .

[105]  E. Quataert Particle Heating by Alfvénic Turbulence in Hot Accretion Flows , 1997, astro-ph/9710127.

[106]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[107]  K. Kuijken,et al.  UNSOLVED PROBLEMS OF THE MILKY WAY , 1996 .

[108]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[109]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[110]  R. Narayan,et al.  Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.

[111]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[112]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[113]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[114]  V. Moncrief,et al.  Relativistic fluid disks in orbit around Kerr black holes , 1976 .

[115]  Douglas M. Eardley,et al.  A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. , 1976 .