Effect of multimode entanglement on lossy optical quantum metrology

In optical interferometry multimode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single-mode quantum states perform just as well as their multimode entangled counterparts. We go beyond this to show that when photon losses occur, an inevitability in any realistic system, multimode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote an alternate way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.

[1]  James C. Gates,et al.  High quantum efficiency photon-number-resolving detector for photonic on-chip information processing , 2013, CLEO: 2013.

[3]  Yaron Silberberg,et al.  Supersensitive polarization microscopy using NOON states of light. , 2014, Physical review letters.

[4]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[5]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[6]  C. Gerry,et al.  Nonlocal entanglement of coherent states, complementarity, and quantum erasure , 2007 .

[7]  C. Gerry,et al.  Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry , 2002 .

[8]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[9]  Charles Kervrann,et al.  Fast live simultaneous multiwavelength four-dimensional optical microscopy , 2010, Proceedings of the National Academy of Sciences.

[10]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[11]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[12]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[13]  Davide Girolami,et al.  Characterizing nonclassical correlations via local quantum uncertainty. , 2012, Physical review letters.

[14]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[15]  Andrea Fiore,et al.  Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths , 2008 .

[16]  Sanders,et al.  Entangled coherent states. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[18]  J. Flowers The Route to Atomic and Quantum Standards , 2004, Science.

[19]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[20]  D G Cory,et al.  Entanglement assisted metrology. , 2005, Physical review letters.

[21]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[22]  B. Sanders Review of entangled coherent states , 2011, 1112.1778.

[23]  Samuel L. Braunstein,et al.  Weak-force detection with superposed coherent states , 2002 .

[24]  Sae Woo Nam,et al.  Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum , 2010, 1004.2727.

[25]  W. Munro,et al.  Attaining subclassical metrology in lossy systems with entangled coherent states , 2014, 1401.4006.

[26]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[27]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[30]  G. R. Jin,et al.  Quantum Fisher information of entangled coherent states in the presence of photon loss , 2013, 1307.7353.

[31]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[32]  Kae Nemoto,et al.  Quantum metrology for nonlinear phase shifts with entangled coherent states , 2012, 1203.2099.

[33]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[34]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[35]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[36]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[37]  A. P. Lund,et al.  Conditional production of superpositions of coherent states with inefficient photon detection , 2004 .

[38]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[39]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[40]  N. Godbout,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[41]  R. Schoelkopf,et al.  Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity , 2012, 1205.2401.

[42]  C. Gerry,et al.  Maximally entangled coherent states and strong violations of Bell-type inequalities , 2009 .

[43]  M. Lewenstein,et al.  Quantum non-demolition detection of strongly correlated systems , 2007, 0709.0527.

[44]  G. Zumofen,et al.  Controlling the phase of a light beam with a single molecule. , 2011, Physical review letters.

[45]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[46]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[47]  Heisenberg-limited interferometry with pair coherent states and parity measurements , 2010, 1005.5038.

[48]  T. Ralph Coherent superposition states as quantum rulers , 2002 .

[49]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[50]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[51]  Marco Barbieri,et al.  Sequential Path Entanglement for Quantum Metrology , 2013, Scientific Reports.

[52]  Taro Itatani,et al.  Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. , 2011, Optics express.

[53]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[54]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[55]  Marco Barbieri,et al.  Multiphoton state engineering by heralded interference between single photons and coherent states , 2012, 1205.0497.

[56]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[57]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[58]  W. Munro,et al.  Entanglement is not a critical resource for quantum metrology , 2009, 0906.1027.

[59]  C. Gerry Generation of Schrödinger cats and entangled coherent states in the motion of a trapped ionby a dispersive interaction , 1997 .

[60]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[61]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[62]  Physical Review , 1965, Nature.

[63]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.