Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature.

[1]  J. Rayas,et al.  The world’s highest levels of surface UV , 2013, Photochemical & Photobiological Sciences.

[2]  C. Dorador,et al.  Identification and Characterization of a Psychrotolerant Acidithiobacillus Strain from Chilean Altiplano , 2013 .

[3]  Á. Aguilera,et al.  Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean. , 2013, Environmental science & technology.

[4]  W. Sand,et al.  Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A , 2013, Applied Microbiology and Biotechnology.

[5]  N. Mykytczuk,et al.  Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. , 2013, Journal of microbiological methods.

[6]  W. Sand,et al.  Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite , 2013, Proteomics.

[7]  J. Imhoff,et al.  Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano , 2013 .

[8]  Om V. Singh,et al.  Radiation-resistant extremophiles and their potential in biotechnology and therapeutics , 2012, Applied Microbiology and Biotechnology.

[9]  W. Sand,et al.  Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans , 2012 .

[10]  M. Dopson,et al.  Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. , 2012, Environmental microbiology.

[11]  D. B. Johnson Geomicrobiology of extremely acidic subsurface environments. , 2012, FEMS microbiology ecology.

[12]  C. Navarro,et al.  Inorganic polyphosphates in extremophiles and their possible functions , 2012, Extremophiles.

[13]  S. Harrison,et al.  Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor , 2012, Applied Microbiology and Biotechnology.

[14]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[15]  S. Kimura,et al.  Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. , 2011, Environmental microbiology.

[16]  D. Holmes,et al.  Draft Genome of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans SS3 , 2011, Journal of bacteriology.

[17]  C. Brochier-Armanet,et al.  Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. , 2011, Microbiology.

[18]  J. Mobarec,et al.  Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. , 2010, Biotechnology advances.

[19]  B. Escobar,et al.  Biooxidation of ferrous iron and sulphide at low temperatures: Implications on acid mine drainage and bioleaching of sulphide minerals , 2010 .

[20]  A. Schippers,et al.  The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria , 2010 .

[21]  J. Imhoff,et al.  Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. , 2010, FEMS microbiology ecology.

[22]  J. Puhakka,et al.  Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3. , 2009, Research in microbiology.

[23]  Cecilia Demergasso,et al.  Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray , 2009, Microbial biotechnology.

[24]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[25]  B. Elberling,et al.  Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. , 2009, Environmental science & technology.

[26]  C. Griebler,et al.  Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. , 2009, International journal of systematic and evolutionary microbiology.

[27]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[28]  E. González-Toril,et al.  Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments , 2009, Extremophiles.

[29]  A. Schippers,et al.  Quantitative Microbial Community Analysis of Three Different Sulfidic Mine Tailing Dumps Generating Acid Mine Drainage , 2008, Applied and Environmental Microbiology.

[30]  W. Sand,et al.  Novel Combination of Atomic Force Microscopy and Epifluorescence Microscopy for Visualization of Leaching Bacteria on Pyrite , 2007, Applied and Environmental Microbiology.

[31]  G. Qiu,et al.  Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China , 2007, Journal of applied microbiology.

[32]  M. Dopson,et al.  Bacterial oxidation of ferrous iron at low temperatures , 2007, Biotechnology and bioengineering.

[33]  J. Puhakka,et al.  Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms , 2007, Biotechnology and bioengineering.

[34]  C. Demergasso,et al.  Bacterial Activity at Low Temperature in Cultures Derived from a Low-Grade Copper Sulphide Bioleaching Heap at the Escondida Mine, Chile , 2007 .

[35]  W. Sand,et al.  Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes , 2007 .

[36]  D. Johnson,et al.  Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. , 2007, Environmental microbiology.

[37]  W. Röling,et al.  Microbial Communities in the World's Largest Acidic Volcanic Lake, Kawah Ijen in Indonesia, and in the Banyupahit River Originating from It , 2006, Microbial Ecology.

[38]  W. Sand,et al.  Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans , 2006 .

[39]  R. Cavicchioli Cold-adapted archaea , 2006, Nature Reviews Microbiology.

[40]  A. Orell,et al.  Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. , 2006, Microbiology.

[41]  B. Elberling Temperature and oxygen control on pyrite oxidation in frozen mine tailings , 2005 .

[42]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[43]  K. Stetter,et al.  Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer , 2004, Archives of Microbiology.

[44]  F. Risacher,et al.  The origin of brines and salts in Chilean salars: a hydrochemical review , 2003 .

[45]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[46]  R. Amann,et al.  Microbial Ecology of an Extreme Acidic Environment, the Tinto River , 2003, Applied and Environmental Microbiology.

[47]  D. Leduc,et al.  Quantification of Bacterial Populations Indigenous to Acidic Drainage Streams , 2002 .

[48]  K B Hallberg,et al.  Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. , 2001, Environmental microbiology.

[49]  W. Sand,et al.  (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching , 2001 .

[50]  P. Norris,et al.  Acidophiles in bioreactor mineral processing , 2000, Extremophiles.

[51]  Wolfgang Sand,et al.  Bacterial and chemical oxidation of pyritic mine tailings at low temperatures , 2000 .

[52]  J. Palmer,et al.  Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis 1 , 1999, The Journal of eukaryotic microbiology.

[53]  W. Sand,et al.  Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching , 1998, Applied and Environmental Microbiology.

[54]  C. Moyer,et al.  Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH , 1997, Applied and environmental microbiology.

[55]  K. Ingvorsen,et al.  Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N) , 1997 .

[56]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.

[57]  O. Tuovinen,et al.  Bacterial Oxidation of Sulfide Minerals in Column Leaching Experiments at Suboptimal Temperatures , 1992, Applied and environmental microbiology.

[58]  M. Todd,et al.  ISOLATION AND TEMPERATURE CHARACTERIZATION OF PSYCHROTROPHIC STRAINS OF THIOBACILLUS FERROOXIDANS FROM THE ENVIRONMENT OF A URANIUM MINE , 1986 .

[59]  M. Mackintosh Nitrogen fixation by thiobacillus ferrooxidans , 1978 .

[60]  M P SILVERMAN,et al.  STUDIES ON THE CHEMOAUTOTROPHIC IRON BACTERIUM FERROBACILLUS FERROOXIDANS , 1959, Journal of bacteriology.