Human Paleoneurology and the Evolution of the Parietal Cortex

Paleoneurology deals with the study of brain anatomy in fossil species, as inferred from the morphology of their endocranial features. When compared with other living and extinct hominids, Homo sapiens is characterized by larger parietal bones and, according to the paleoneurological evidence, also by larger parietal lobes. The dorsal elements of the posterior parietal cortex (superior parietal lobules, precuneus, and intraparietal sulcus) may be involved in these morphological changes. This parietal expansion was also associated with an increase in the corresponding vascular networks, and possibly with increased heat loads. Only H. sapiens has a specific early ontogenetic stage in which brain form achieves such globular appearance. In adult modern humans, the precuneus displays remarkable variation, being largely responsible for the longitudinal parietal size. The precuneus is also much more expanded in modern humans than in chimpanzees. Parietal expansion is not influenced by brain size in fossil hominids or living primates. Therefore, our larger parietal cortex must be interpreted as a derived feature. Spatial models suggest that the dorsal and anterior areas of the precuneus might be involved in these derived morphological variations. These areas are crucial for visuospatial integration, and are sensitive to both genetic and environmental influences. This article reviews almost 20 years of my collaborations on human parietal lobe evolution, integrating functional craniology, paleoneurology, and evolutionary neuroanatomy.

[1]  N. Ogihara,et al.  Surfin’ endocasts: The good and the bad on brain form , 2018 .

[2]  P. Gunz,et al.  The evolution of modern human brain shape , 2018, Science Advances.

[3]  Ana Sofia Pereira-Pedro,et al.  Shape analysis of spatial relationships between orbito‐ocular and endocranial structures in modern humans and fossil hominids , 2017, Journal of anatomy.

[4]  M. Catani,et al.  Short parietal lobe connections of the human and monkey brain , 2017, Cortex.

[5]  M. Gerstein,et al.  Molecular and cellular reorganization of neural circuits in the human lineage , 2017, Science.

[6]  Ana Sofia Pereira-Pedro,et al.  Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus , 2017, Brain, Behavior and Evolution.

[7]  Ryan E. B. Mruczek,et al.  A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker , 2017, Neuropsychologia.

[8]  E. Bruner,et al.  A frontal lobe surface analysis in three archaic African human fossils: OH 9, Buia, and Bodo , 2017 .

[9]  E. Bruner Language, Paleoneurology, and the Fronto-Parietal System , 2017, Front. Hum. Neurosci..

[10]  Ana Sofia Pereira-Pedro,et al.  Patterns of morphological integration between parietal and temporal areas in the human skull , 2017, Journal of morphology.

[11]  Y. Hamada,et al.  Age-related changes of sulcal imprints on the endocranium in the Japanese macaque (Macaca fuscata). , 2017, American journal of physical anthropology.

[12]  James K Rilling,et al.  Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample. , 2017, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[13]  J. Rilling,et al.  Evidence for expansion of the precuneus in human evolution , 2017, Brain Structure and Function.

[14]  Emiliano Bruner,et al.  Sulcal pattern, extension, and morphology of the precuneus in adult humans. , 2016, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[15]  Angela R. Laird,et al.  Left inferior parietal lobe engagement in social cognition and language , 2016, Neuroscience & Biobehavioral Reviews.

[16]  C. Zollikofer,et al.  Brain development is similar in Neanderthals and modern humans , 2016, Current Biology.

[17]  Emiliano Bruner,et al.  Visuospatial integration and human evolution: the fossil evidence. , 2016, Journal of anthropological sciences = Rivista di antropologia : JASS.

[18]  A. Iriki,et al.  Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus , 2016 .

[19]  Guy A Orban,et al.  Functional definitions of parietal areas in human and non-human primates , 2016, Proceedings of the Royal Society B: Biological Sciences.

[20]  Emiliano Bruner,et al.  Diploic vessels and computed tomography: Segmentation and comparison in modern humans and fossil hominids. , 2016, American journal of physical anthropology.

[21]  Alain Berthoz,et al.  Role of the human retrosplenial cortex/parieto-occipital sulcus in perspective priming , 2016, NeuroImage.

[22]  Giorgio M. Innocenti,et al.  Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans , 2015, Neuroscience & Biobehavioral Reviews.

[23]  N. Ogihara,et al.  The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans , 2015, Journal of anatomy.

[24]  O. Blanke,et al.  Brain system for mental orientation in space, time, and person , 2015, Proceedings of the National Academy of Sciences.

[25]  Stefan Everling,et al.  Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI , 2015, NeuroImage.

[26]  Karenleigh A. Overmann,et al.  Three hands: one year later. , 2015, Journal of anthropological sciences = Rivista di antropologia : JASS.

[27]  R. Holloway,,et al.  A paleoneurological survey of Homo erectus endocranial metrics. , 2015 .

[28]  R. Colom,et al.  Cortical surface area and cortical thickness in the precuneus of adult humans , 2015, Neuroscience.

[29]  J. Rilling,et al.  The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. , 2015, Cerebral cortex.

[30]  Angela R. Laird,et al.  Subspecialization in the human posterior medial cortex , 2015, NeuroImage.

[31]  Maria V. Sanchez-Vives,et al.  Changing bodies changes minds: owning another body affects social cognition , 2015, Trends in Cognitive Sciences.

[32]  Thomas T. Hills,et al.  Exploration versus exploitation in space, mind, and society , 2015, Trends in Cognitive Sciences.

[33]  Michael Petrides,et al.  Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain , 2014, Proceedings of the Royal Society B: Biological Sciences.

[34]  W. Chu DYNAMICS OF LEARNING IN NEANDERTHALS AND MODERN HUMANS , 2014 .

[35]  Linda B. Smith,et al.  Developmental process emerges from extended brain–body–behavior networks , 2014, Trends in Cognitive Sciences.

[36]  P. Gunz,et al.  A Shared Pattern of Postnatal Endocranial Development in Extant Hominoids , 2014, Evolutionary Biology.

[37]  S. Lehéricy,et al.  The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval , 2014, Brain Structure and Function.

[38]  Naomichi Ogihara,et al.  Functional craniology and brain evolution: from paleontology to biomedicine , 2014, Front. Neuroanat..

[39]  Emiliano Bruner,et al.  Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals , 2014, Journal of anatomy.

[40]  P. Bandettini,et al.  Connectivity trajectory across lifespan differentiates the precuneus from the default network , 2014, NeuroImage.

[41]  Michael F Land,et al.  Do we have an internal model of the outside world? , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Amanda V. Utevsky,et al.  Precuneus Is a Functional Core of the Default-Mode Network , 2014, The Journal of Neuroscience.

[43]  Robin I. M. Dunbar,et al.  New insights into differences in brain organization between Neanderthals and anatomically modern humans , 2013, Proceedings of the Royal Society B: Biological Sciences.

[44]  E. Bruner,et al.  Neurocranial evolution in modern humans: the case of Jebel Irhoud 1 , 2013 .

[45]  José Manuel de la Cuétara,et al.  Quantifying patterns of endocranial heat distribution: Brain geometry and thermoregulation , 2012, American journal of human biology : the official journal of the Human Biology Council.

[46]  A. Dale,et al.  Hierarchical Genetic Organization of Human Cortical Surface Area , 2012, Science.

[47]  I. Toni,et al.  Cortical Dynamics of Sensorimotor Integration during Grasp Planning , 2012, The Journal of Neuroscience.

[48]  Sheng Zhang,et al.  Functional connectivity mapping of the human precuneus by resting state fMRI , 2012, NeuroImage.

[49]  A. Iriki,et al.  Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  José Manuel de la Cuétara,et al.  A Bivariate Approach to the Variation of the Parietal Curvature in the Genus Homo , 2011, Anatomical record.

[51]  S. Frey,et al.  Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning , 2011, NeuroImage.

[52]  C. Klingenberg MorphoJ: an integrated software package for geometric morphometrics , 2011, Molecular ecology resources.

[53]  P. Gunz,et al.  Brain development after birth differs between Neanderthals and modern humans , 2010, Current Biology.

[54]  P. Gunz,et al.  Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. , 2010, Journal of human evolution.

[55]  L. Malafouris The brain-artefact interface (BAI): a challenge for archaeology and cultural neuroscience. , 2010, Social cognitive and affective neuroscience.

[56]  E. Bruner Morphological Differences in the Parietal Lobes within the Human Genus , 2010, Current Anthropology.

[57]  A. Schleicher,et al.  Hominoid visual brain structure volumes and the position of the lunate sulcus. , 2010, Journal of human evolution.

[58]  K. Amunts,et al.  Centenary of Brodmann's map — conception and fate , 2010, Nature Reviews Neuroscience.

[59]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[60]  T. Asamizuya,et al.  Gray and white matter changes associated with tool-use learning in macaque monkeys , 2009, Proceedings of the National Academy of Sciences.

[61]  P. Gunz,et al.  The pattern of endocranial ontogenetic shape changes in humans , 2009, Journal of anatomy.

[62]  N. Andreasen,et al.  Sex differences in parietal lobe morphology: Relationship to mental rotation performance , 2009, Brain and Cognition.

[63]  Peter Fransson,et al.  The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis , 2008, NeuroImage.

[64]  Emiliano Bruner,et al.  The middle meningeal artery: from clinics to fossils , 2008, Child's Nervous System.

[65]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[66]  Scott T. Grafton,et al.  Beyond grasping: Representation of action in human anterior intraparietal sulcus , 2007, NeuroImage.

[67]  E. Crispo,et al.  THE BALDWIN EFFECT AND GENETIC ASSIMILATION: REVISITING TWO MECHANISMS OF EVOLUTIONARY CHANGE MEDIATED BY PHENOTYPIC PLASTICITY , 2007, Evolution; international journal of organic evolution.

[68]  R. Haier,et al.  The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence , 2007, Behavioral and Brain Sciences.

[69]  P. Gunz,et al.  The Neanderthal "chignon": variation, integration, and homology. , 2007, Journal of human evolution.

[70]  J. Richtsmeier,et al.  Phenotypic integration of neurocranium and brain. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[71]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[72]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[73]  Giorgio Manzi,et al.  Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans. , 2005, European journal of morphology.

[74]  E. Bruner Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. , 2004, Journal of human evolution.

[75]  Giorgio Manzi,et al.  Midsagittal cranial shape variation in the genus Homo by geometric morphometrics. , 2004, Collegium antropologicum.

[76]  J. Arsuaga,et al.  Encephalization and allometric trajectories in the genus Homo: Evidence from the Neandertal and modern lineages , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  John S. Allen,et al.  Normal neuroanatomical variation in the human brain: an MRI-volumetric study. , 2002, American journal of physical anthropology.

[78]  H. Damasio,et al.  Humans and great apes share a large frontal cortex , 2002, Nature Neuroscience.

[79]  D. Lieberman,et al.  The evolution and development of cranial form in Homo sapiens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  K. Zilles,et al.  Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex , 2001, NeuroImage.

[81]  H. Damasio,et al.  The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. , 2000, Journal of human evolution.

[82]  F. Bookstein,et al.  Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis , 1999, The Anatomical record.

[83]  Richard S. J. Frackowiak,et al.  The Mind's Eye—Precuneus Activation in Memory-Related Imagery , 1995, NeuroImage.

[84]  V B Mountcastle,et al.  The parietal system and some higher brain functions. , 1995, Cerebral cortex.

[85]  R. Holloway, Exploring the dorsal surface of hominoid brain endocasts by stereoplotter and discriminant analysis. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[86]  M L Moss,et al.  A functional approach to craniology. , 1960, American journal of physical anthropology.

[87]  E. Bruner The Fossil Evidence of Human Brain Evolution , 2020, Evolutionary Neuroscience.

[88]  B. Wood,et al.  Evolution of the modern human brain. , 2019, Progress in brain research.

[89]  E. Bruner,et al.  Networking Brains: Modeling Spatial Relationships of the Cerebral Cortex , 2018 .

[90]  Ana Sofia Pereira-Pedro,et al.  The Evolution of the Parietal Lobes in the Genus Homo , 2018 .

[91]  E. Bruner Functional Craniology and Brain Evolution , 2015 .

[92]  E. Bruner Functional Craniology, Human Evolution, and Anatomical Constraints in the Neanderthal Braincase , 2014 .

[93]  T. Wynn,et al.  Extended mind and visuo-spatial integration: three hands for the Neandertal lineage. , 2014, Journal of anthropological sciences = Rivista di antropologia : JASS.

[94]  José Manuel de la Cuétara,et al.  The evolution of the meningeal vascular system in the human genus: From brain shape to thermoregulation , 2011, American journal of human biology : the official journal of the Human Biology Council.

[95]  T. Plummer Flaked stones and old bones: biological and cultural evolution at the dawn of technology. , 2004, American journal of physical anthropology.

[96]  R. Holloway,,et al.  Brain endocasts - the paleoneurological evidence , 2004 .

[97]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[98]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .