Ionic Liquid‐Mediated α‐Fe2O3 Shape‐Controlled Nanocrystal‐Supported Noble Metals: Highly Active Materials for CO Oxidation

Shape‐controlled iron oxide nanocrystals were prepared by using an ionic liquid‐mediated hydrothermal process. Different morphologies can be synthesised, such as cubes and porous nanotubes. Owing to the different morphologies developed, accessible surface area varies from a few m2 g−1 to more than 50 m2 g−1. These differences result in different oxygen mobilities, and the porous nanorods demonstrate the highest bulk oxygen mobility. Thus, all these shaped materials demonstrate higher activity for the oxidation reaction compared to the commercial reference. In addition, the favourable physical properties, that is high surface area, enable the easy dispersion of noble metal nanoparticles (platinum, palladium and gold); some of these high‐surface area noble metal‐containing materials demonstrate remarkable catalytic activities. Porous nanorod‐supported gold nanoparticles enable the conversion of CO below 100 °C, which is far better than on commercial α‐Fe2O3‐supported gold for which dispersion of gold remains difficult owing to the low surface area of the commercial support.

[1]  M. Wolff,et al.  Ionische Flüssigkeiten – neue Perspektiven für die anorganische Synthesechemie? , 2011 .

[2]  C. Feldmann,et al.  Ionic liquids: new perspectives for inorganic synthesis? , 2011, Angewandte Chemie.

[3]  Kangnian Fan,et al.  Heteroepitaxial growth of gold on flowerlike magnetite: An efficacious and magnetically recyclable catalyst for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol , 2011 .

[4]  Xiao‐Fang Wang,et al.  Enhanced catalytic activity of α-Fe2O3 nanorods enclosed with {110} and {001} planes for methane combustion and CO oxidation , 2011 .

[5]  Yadong Li,et al.  Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation , 2011 .

[6]  D. Duprez,et al.  Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides , 2011 .

[7]  Huanlei Wang,et al.  Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4 , 2010 .

[8]  Wenjun Zheng,et al.  α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties , 2010 .

[9]  Hwan-Jeong Jeong,et al.  Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. , 2010, ACS applied materials & interfaces.

[10]  Jihong Yu,et al.  Preparation of Inorganic Materials Using Ionic Liquids , 2010, Advanced materials.

[11]  Xiaochuan Duan,et al.  Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. , 2009, ACS nano.

[12]  M. Haruta,et al.  Pretreatments of Co3O4 at moderate temperature for CO oxidation at −80 °C , 2009 .

[13]  Wen‐Cui Li,et al.  Shape and size controlled alpha-Fe₂O₃ nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance , 2009 .

[14]  X. Lai,et al.  Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine , 2009, Nanotechnology.

[15]  S. Tkachenko,et al.  Preparation and properties of modified hopcalite , 2009 .

[16]  Xuchuan Jiang,et al.  Synthesis of Pd/α-Fe2O3 nanocomposites for catalytic CO oxidation , 2009 .

[17]  Ying-Jie Zhu,et al.  Iron oxide hollow spheres : Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties , 2009 .

[18]  Suresh T. Gulati,et al.  Catalytic Air Pollution Control: Heck/Catalytic , 2009 .

[19]  M. Takano,et al.  Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. , 2008, Journal of the American Chemical Society.

[20]  Z. Zhong,et al.  Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[21]  Ling-Dong Sun,et al.  Iron Oxide Tube-in-Tube Nanostructures , 2007 .

[22]  Robert J. Davis,et al.  Understanding Au-Catalyzed Low-Temperature CO Oxidation , 2007 .

[23]  Dong Wang,et al.  Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment , 2007 .

[24]  Russell E Morris,et al.  Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. , 2007, Accounts of chemical research.

[25]  Kenneth S Suslick,et al.  Sonochemical synthesis of nanosized hollow hematite. , 2007, Journal of the American Chemical Society.

[26]  Lihong Dong,et al.  Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres , 2007 .

[27]  F. Kleitz,et al.  Hard templating pathways for the synthesis of nanostructured porous Co₃O₄ , 2007 .

[28]  V. Loukopoulosb,et al.  On the mechanism of selective CO oxidation on nanosized Auγ-Al2O3 catalysts , 2006 .

[29]  R. Perzynski,et al.  "Nanocasting": using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed gamma-Fe2O3 nanoparticles. , 2006, The journal of physical chemistry. B.

[30]  Li Wan,et al.  Self‐Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment , 2006 .

[31]  Yi Xie,et al.  Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. , 2006, The journal of physical chemistry. B.

[32]  D. G. McCartney,et al.  Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. , 2006, Small.

[33]  Yuanhui Zheng,et al.  Quasicubic α-Fe2O3 Nanoparticles with Excellent Catalytic Performance , 2006 .

[34]  Ferdi Schüth,et al.  Support effect in high activity gold catalysts for CO oxidation. , 2006, Journal of the American Chemical Society.

[35]  D. Duprez,et al.  Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1–xFexO3 , 2005 .

[36]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[37]  D. Bazin,et al.  Nanocasting, templated syntheses and structural studies of manganese oxide nanoparticles nucleated in the pores of ordered mesoporous silicas (SBA-15) , 2005 .

[38]  F. Schüth,et al.  Weakly Ferromagnetic Ordered Mesoporous Co3O4 Synthesized by Nanocasting from Vinyl‐Functionalized Cubic Ia3d Mesoporous Silica , 2005 .

[39]  D. Uner,et al.  Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts , 2004 .

[40]  D. Duprez,et al.  A novel dynamic kinetic model of oxygen isotopic exchange on a supported metal catalyst , 2004 .

[41]  W. F. Maier,et al.  Edelmetallfreie Katalysatoren für die CO‐Oxidation bei Raumtemperatur durch gezielte Evolution , 2004 .

[42]  Jens W. Saalfrank,et al.  Directed evolution of noble-metal-free catalysts for the oxidation of CO at room temperature. , 2004, Angewandte Chemie.

[43]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[44]  Jae-pyoung Ahn,et al.  Sol–Gel Mediated Synthesis of Fe2O3 Nanorods , 2003 .

[45]  K. Klabunde,et al.  Novel halogen and interhalogen adducts of nanoscale magnesium oxide. , 2003, Journal of the American Chemical Society.

[46]  L. Guczi,et al.  Gold nanoparticles deposited on SiO2/Si100: correlation between size, electron structure, and activity in CO oxidation. , 2003, Journal of the American Chemical Society.

[47]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[48]  Z. Pászti,et al.  Effect of treatments on gold nanoparticles: Relation between morphology, electron structure and catalytic activity in CO oxidation , 2002 .

[49]  D. Duprez,et al.  Oxygen surface mobility and isotopic exchange on oxides: role of the nature and the structure of metal particles , 2000 .

[50]  L. Ilieva,et al.  TPR and TPD investigation of , 1997 .

[51]  L. Ilieva,et al.  Kinetic parameters obtained from TPR data for α-Fe2O3 and systems , 1997 .

[52]  Suresh T. Gulati,et al.  Catalytic Air Pollution Control: Commercial Technology , 1994 .

[53]  M. Haruta,et al.  Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts , 1994 .

[54]  J. Hulliger Chemistry and crystal growth , 1994 .

[55]  Jürg Hulliger Chemie und Kristallzüchtung , 1994 .

[56]  Daniel Duprez,et al.  Reactivity of steam in exhaust gas catalysis I. Steam and oxygen/steam conversions of carbon monoxide and of propane over PtRh catalysts , 1993 .

[57]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[58]  G. Ertl Oscillatory Kinetics and Spatio-Temporal Self-Organization in Reactions at Solid Surfaces , 1991, Science.

[59]  Y. Yao The oxidation of CO and hydrocarbons over noble metal catalysts , 1984 .

[60]  G. K. Boreskov,et al.  INVESTIGATION OF OXIDE‐TYPE OXIDATION CATALYSTS BY REACTIONS OF OXYGEN ISOTOPIC EXCHANGE , 1973, Annals of the New York Academy of Sciences.

[61]  H. Coward Combustion, Flames and Explosions of Gases , 1938, Nature.

[62]  A. Taubert Inorganic materials synthesis - : a bright future for ionic liquids? , 2005 .

[63]  G. K. Boreskov The Catalysis of Isotopic Exchange in Molecular Oxygen , 1965 .