Measurement of anomalous diffusion using recurrent neural networks.

Anomalous diffusion occurs in many physical and biological phenomena, when the growth of the mean squared displacement (MSD) with time has an exponent different from one. We show that recurrent neural networks (RNNs) can efficiently characterize anomalous diffusion by determining the exponent from a single short trajectory, outperforming the standard estimation based on the MSD when the available data points are limited, as is often the case in experiments. Furthermore, the RNNs can handle more complex tasks where there are no standard approaches, such as determining the anomalous diffusion exponent from a trajectory sampled at irregular times, and estimating the switching time and anomalous diffusion exponents of an intermittent system that switches between different kinds of anomalous diffusion. We validate our method on experimental data obtained from subdiffusive colloids trapped in speckle light fields and superdiffusive microswimmers.

[1]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[2]  غلامحسین رنجبر عمرانی,et al.  10 , 1910, The Streel.

[3]  Zach DeVito,et al.  Opt , 2017 .

[4]  Grzegorz Sikora,et al.  Recurrence statistics for anomalous diffusion regime change detection , 2018, Comput. Stat. Data Anal..

[5]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[6]  Yoav Shechtman,et al.  Single-Particle Diffusion Characterization by Deep Learning. , 2019, Biophysical journal.

[7]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[8]  Igor M. Sokolov,et al.  A toolbox for determining subdiffusive mechanisms , 2015 .

[9]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[10]  Grzegorz Sikora,et al.  Optimal parameters for anomalous-diffusion-exponent estimation from noisy data , 2018, Physical Review E.

[11]  Aleksander Weron,et al.  Statistical testing approach for fractional anomalous diffusion classification. , 2019, Physical review. E.

[12]  Sylvain Gigan,et al.  Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation , 2013, Scientific Reports.

[13]  Konrad Hinsen,et al.  Communication: A multiscale Bayesian inference approach to analyzing subdiffusion in particle trajectories. , 2016, The Journal of chemical physics.

[14]  Alexandra Kroll,et al.  Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments , 2017, PloS one.

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  Hartmut Löwen,et al.  Light-controlled assembly of active colloidal molecules. , 2018, The Journal of chemical physics.

[17]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[18]  Ralf Jungmann,et al.  Quantitative analysis of single particle trajectories: mean maximal excursion method. , 2010, Biophysical journal.

[19]  Clemens Bechinger,et al.  Active Brownian motion tunable by light , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Lenka Zdeborová,et al.  New tool in the box , 2017, Nature Physics.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[23]  Andrey G. Cherstvy,et al.  Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. , 2018, Physical chemistry chemical physics : PCCP.

[24]  Haw Yang,et al.  Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. , 2006, Journal of Physical Chemistry B.

[25]  Natallia Makarava,et al.  Bayesian estimation of self-similarity exponent , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  J. Theriot,et al.  Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm , 2010 .

[27]  Jean-Baptiste Masson,et al.  Single-Molecule Imaging of Nav1.6 on the Surface of Hippocampal Neurons Reveals Somatic Nanoclusters. , 2016, Biophysical journal.

[28]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[29]  Neil Genzlinger A. and Q , 2006 .

[30]  D. Krapf,et al.  Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis. , 2017, Physical review. E.

[31]  E. Cox,et al.  Physical nature of bacterial cytoplasm. , 2006, Physical review letters.

[32]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[33]  G. Oshanin,et al.  Spectral Content of a Single Non-Brownian Trajectory , 2019, Physical Review X.

[34]  R. Metzler,et al.  Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions , 2013 .

[35]  Chem. , 2020, Catalysis from A to Z.

[36]  A. Caspi,et al.  Enhanced diffusion in active intracellular transport. , 2000, Physical review letters.

[37]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[38]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[39]  Ralf Metzler,et al.  Analysis of short subdiffusive time series: scatter of the time-averaged mean-squared displacement , 2010 .

[40]  Y. Garini,et al.  Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. , 2009, Physical review letters.

[41]  Krzysztof Burnecki,et al.  Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach , 2015, Scientific Reports.

[42]  Krzysztof Burnecki,et al.  Guidelines for the Fitting of Anomalous Diffusion Mean Square Displacement Graphs from Single Particle Tracking Experiments , 2015, PloS one.

[43]  Yuval Garini,et al.  Improved estimation of anomalous diffusion exponents in single-particle tracking experiments. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  R. Metzler,et al.  Strange kinetics of single molecules in living cells , 2012 .

[45]  Johan Elf,et al.  Single-Molecule Kinetics in Living Cells. , 2018, Annual review of biochemistry.

[46]  Giovanni Volpe,et al.  Digital video microscopy enhanced by deep learning , 2018, Optica.

[47]  Krzysztof Burnecki,et al.  Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. , 2012, Biophysical journal.

[48]  J. Klafter,et al.  Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. , 2009, Physical review letters.

[49]  Sylvain Gigan,et al.  Speckle optical tweezers: micromanipulation with random light fields. , 2014, Optics express.

[50]  G. Volpe,et al.  Microscopic Engine Powered by Critical Demixing. , 2017, Physical review letters.

[51]  D. Krapf,et al.  Ergodicity breaking on the neuronal surface emerges from random switching between diffusive states , 2017, Scientific Reports.