Controlled-distortion constrained global parametrization

The quality of a global parametrization is determined by a number of factors, including amount of distortion, number of singularities (cones), and alignment with features and boundaries. Placement of cones plays a decisive role in determining the overall distortion of the parametrization; at the same time, feature and boundary alignment also affect the cone placement. A number of methods were proposed for automatic choice of cone positions, either based on singularities of cross-fields and emphasizing alignment, or based on distortion optimization. In this paper we describe a method for placing cones for seamless global parametrizations with alignment constraints. We use a close relation between variation-minimizing cross-fields and related 1-forms and conformal maps, and demonstrate how it leads to a constrained optimization problem formulation. We show for boundary-aligned parametrizations metric distortion may be reduced by cone chains, sometimes to an arbitrarily small value, and the trade-off between the distortion and the number of cones can be controlled by a regularization term. Constrained parametrizations computed using our method have significantly lower distortion compared to the state-of-the art field-based method, yet maintain feature and boundary alignment. In the most extreme cases, parametrization collapse due to alignment constraints is eliminated.

[1]  A. Pressley Elementary Differential Geometry , 2000 .

[2]  Elaine Cohen,et al.  Localized Quadrilateral Coarsening , 2009, Comput. Graph. Forum.

[3]  Guy Bunin,et al.  A continuum theory for unstructured mesh generation in two dimensions , 2006, Comput. Aided Geom. Des..

[4]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[5]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[6]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[7]  Guy Bunin,et al.  Towards Unstructured Mesh Generation Using the Inverse Poisson Problem , 2008, 0802.2399.

[8]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[9]  Shi-Min Hu,et al.  Metric-Driven RoSy Field Design and Remeshing , 2010, IEEE Transactions on Visualization and Computer Graphics.

[10]  M. Dindoš,et al.  Hardy Spaces and Potential Theory on C1 Domains in Riemannian Manifolds , 2007 .

[11]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[12]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[13]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[14]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[15]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..

[16]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[17]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[18]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[19]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[20]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[21]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, ACM Trans. Graph..

[22]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[23]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[24]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[25]  ZorinDenis,et al.  Controlled-distortion constrained global parametrization , 2013 .

[26]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[27]  Dennis DeTurck,et al.  Cohomology of harmonic forms on Riemannian manifolds with boundary , 2005, math/0508372.

[28]  Daniele Panozzo,et al.  Practical quad mesh simplification , 2010, Comput. Graph. Forum.

[29]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[30]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[31]  Bruno Lévy,et al.  Quad Meshing , 2012, Eurographics.

[32]  Keenan Crane,et al.  Rectangular multi-chart geometry images , 2006, SGP '06.

[33]  Elaine Cohen,et al.  Semi‐regular Quadrilateral‐only Remeshing from Simplified Base Domains , 2009, Comput. Graph. Forum.

[34]  Paolo Cignoni,et al.  Almost Isometric Mesh Parameterization through Abstract Domains , 2010, IEEE Transactions on Visualization and Computer Graphics.

[35]  Leif Kobbelt,et al.  Automatic Generation of Structure Preserving Multiresolution Models , 2005, Comput. Graph. Forum.

[36]  Barrett O'Neill Chapter 7 – Riemannian Geometry , 2006 .

[37]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..