On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system

This paper proposes a chaotic jerk system coexisting with only one non-hyperbolic equilibrium with one zero eigenvalue and a pair of complex conjugate eigenvalues. The system has no classical Hopf bifurcations and belongs to a newly category of chaotic systems. Based on the averaging theory, an analytic proof of the existence of zero-Hopf bifurcation is exhibited. Moreover, unstable periodic orbits from the zero-Hopf bifurcation are obtained. This approach may be useful to clarify chaotic attractors with non-hyperbolic equilibrium hidden behind complicated phenomena.

[1]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[2]  Michio Yamada,et al.  Unstable periodic solutions embedded in a shell model turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[4]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[5]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[6]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[7]  J. Marsden,et al.  Bifurcation to Quasi-Periodic Tori in the Interaction of Steady State and Hopf Bifurcations , 1984 .

[8]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[9]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[10]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[11]  Julien Clinton Sprott,et al.  Finding coexisting attractors using amplitude control , 2014 .

[12]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[13]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[14]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[15]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[16]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[17]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[18]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[19]  Jaume Llibre,et al.  Hopf bifurcation for some analytic differential systems in R^3 via averaging theory , 2011 .

[20]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[21]  Nikolay V. Kuznetsov,et al.  Invariance of Lyapunov characteristic exponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular linearizations , 2014 .

[22]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[23]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[24]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[26]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[27]  J. Llibre,et al.  Zero-Hopf bifurcation for a class of Lorenz-type systems , 2014 .

[28]  John Guckenheimer,et al.  On a codimension two bifurcation , 1981 .

[29]  H. Greenside,et al.  Spatially localized unstable periodic orbits of a high-dimensional chaotic system , 1998 .

[30]  J. Llibre,et al.  HOPF BIFURCATION IN HIGHER DIMENSIONAL DIFFERENTIAL SYSTEMS VIA THE AVERAGING METHOD , 2009 .

[31]  Yoshitaka Saiki,et al.  Unstable periodic orbits and chaotic economic growth , 2005 .

[32]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[33]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[34]  Nikolay V. Kuznetsov,et al.  Hidden Attractor in Chua's Circuits , 2011, ICINCO.

[35]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[36]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[37]  Qigui Yang,et al.  Dynamical analysis of the generalized Sprott C system with only two stable equilibria , 2012 .

[38]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .