Rapid biochemical functionalization of technical surfaces by means of a photobleaching-based maskless projection lithography process

MEMS/MOEMS based systems are increasingly applied in the biological and biomedical context, e.g. in form of biosensors or substrates for monitoring biological responses such as cell migration. For such applications, technical surfaces have to be provided with suitable biochemical functionalization. Typical functionalization procedures include wet-chemical techniques based on self-assembled monolayers of thiols on gold or silanes on glass. These processes create binary patterns and are often of limited use if spatially constrained non-binary patterns like surface bound biochemical gradients have to be provided. In order to create gradients or patterns, methods such as direct spotting or dip pen nanolithography can be used. Here, gradients can be emulated by varying the spot density or the concentration of the solutions employed. However, these methods are serial in nature and are thus of limited use if large surface areas have to be patterned. We present a technique to generate gradients of biochemical function by a photobleaching-based process allowing fast large-scale patterning. The process is based on photobleaching resulting in light-induced coupling of a fluorescently tagged biomolecule to a technical surface by concerted bleaching of the fluorophore. We custom designed a maskless projection lithography system based on a digital mirror device that allows the rapid creation of 8-bit grayscale protein patterns on any technical surface from digital data (e.g. bitmap files). We demonstrate how this process can be used to obtain patterns of several cm2 lateral size at micrometer resolution within minutes.