Data Mining, Machine Learning and Big Data Analytics

This paper analyses deep learning and traditional data mining and machine learning methods; compares the advantages and disadvantage of the traditional methods; introduces enterprise needs, systems and data, IT challenges, and Big Data in an extended service infrastructure. The feasibility and challenges of the applications of deep learning and traditional data mining and machine learning methods in Big Data analytics are also analyzed and presented.

[1]  Nishio Takayuki,et al.  Deep Learning Tutorial , 2018 .

[2]  Juha Heinanen,et al.  OF DATA INTENSIVE APPLICATIONS , 1986 .

[3]  Taghi M. Khoshgoftaar,et al.  Deep learning applications and challenges in big data analytics , 2015, Journal of Big Data.

[4]  Yu-Wei David Chiu,et al.  Machine Learning with R Cookbook , 2015 .

[5]  J. Ledolter Data Mining and Business Analytics with R , 2013 .

[6]  Peter Harrington,et al.  Machine Learning in Action , 2012 .

[7]  Joyce Jackson,et al.  Data Mining; A Conceptual Overview , 2002, Commun. Assoc. Inf. Syst..

[8]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[9]  C. L. Philip Chen,et al.  Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..

[10]  Abhijit Ghatak,et al.  Machine Learning with R , 2017, Springer Singapore.

[11]  Xindong Wu,et al.  The Top Ten Algorithms in Data Mining , 2009 .

[12]  Mohammed J. Zaki Data Mining and Analysis: Fundamental Concepts and Algorithms , 2014 .

[13]  Seiya Tokui,et al.  Jubatus: An Open Source Platform for Distributed Online Machine Learning , 2013 .

[14]  Galit Shmueli,et al.  Data Mining in Excel: Lecture Notes and Cases , 2005 .

[15]  Richard J. Cleary Applied Data Mining: Statistical Methods for Business and Industry , 2006 .

[16]  Daniel L. Sherrell,et al.  Communications of the Association for Information Systems , 1999 .

[17]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[18]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[19]  Jason Weston,et al.  Deep learning via semi-supervised embedding , 2008, ICML '08.

[20]  Graham J. Williams Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery , 2011 .

[21]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[22]  Shan Suthaharan,et al.  Big data classification: problems and challenges in network intrusion prediction with machine learning , 2014, PERV.

[23]  Sanjay Sharma,et al.  Intrusion Detection System: A Review , 2015 .