Fast Single-Step Least-Squares Reverse-Time Imaging via Adaptive Matching Filters in Beams

Least-squares reverse time migration (LSRTM) is a powerful tool in seeking broadband-wavenumber reflectivity images. It produces better images over reverse-time migration (RTM) at the expense of computational cost. The Hessian effect can be measured in the image domain with the point-spread function (PSF). Here, we try to measure the Hessian effect in the data domain with the so-called trace-spread function (TSF). The difference between PSF and TSF is that the former originates from <inline-formula> <tex-math notation="LaTeX">${{\mathbf{L}}^{T}}{\mathbf{L}}$ </tex-math></inline-formula> in the image domain while the latter from <inline-formula> <tex-math notation="LaTeX">${\mathbf{L}}{{\mathbf{L}}^{T}}$ </tex-math></inline-formula> in the data domain. By comparing the TSFs with their original corresponding traces (or beams), we can design adaptive matching filters for preconditioning to alleviate the Hessian effect. However, the full TSF matrix is expensive. In this article, we propose a multiscale solution, which first has a diagonal approximation to <inline-formula> <tex-math notation="LaTeX">${\mathbf{L}}{{\mathbf{L}}^{T}}$ </tex-math></inline-formula> in beams, and then handle the full submatrix composed of the one-beam traces using the Sherman–Morrison formula. The preconditioned beams are superimposed into a “deblurred” data for remigration. Through synthetic and real data examples, we see that: 1) single-step data-domain LSRTM can yield deblurred RTM images via adaptive matching filters and 2) the beam-by-beam consideration outperforms the trace-by-trace one.

[1]  Malcolm Sambridge,et al.  Boundary value ray tracing in a heterogeneous medium: a simple and versatile algorithm , 1990 .

[2]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[3]  Peter Milligan,et al.  Image Enhancement of Aeromagnetic Data using Automatic Gain Control , 1994 .

[4]  William W. Symes,et al.  The seismic reflection inverse problem , 2009 .

[5]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[6]  A. Guitton Amplitude and kinematic corrections of migrated images for nonunitary imaging operators , 2004 .

[7]  Daniel Peter,et al.  One-step data-domain least-squares reverse time migration , 2018, GEOPHYSICS.

[8]  Fernando L. Teixeira,et al.  Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves , 2005, IEEE Geoscience and Remote Sensing Letters.

[9]  Hao Zhang,et al.  Eliminating the redundant source effects from the cross-correlation reverse-time migration using a modified stabilized division , 2016, Comput. Geosci..

[10]  Mauricio D. Sacchi,et al.  High-resolution wave-equation AVA imaging: Algorithm and tests with a data set from the Western Canadian Sedimentary Basin , 2005 .

[11]  Mauricio D. Sacchi,et al.  Robust AVP estimation using least‐squares wave‐equation migration , 2002 .

[12]  P. Kosmas,et al.  A matched-filter FDTD-based time reversal approach for microwave breast cancer detection , 2006, IEEE Transactions on Antennas and Propagation.

[13]  Shuki Ronen,et al.  Imaging with primaries and free-surface multiples by joint least-squares reverse time migration , 2015 .

[14]  Yu Zhang,et al.  A stable and practical implementation of least-squares reverse time migration , 2013 .

[15]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[16]  Zhiyong Wang,et al.  Reverse-Time Migration Based Optical Imaging , 2016, IEEE Transactions on Medical Imaging.

[17]  Amir Asif,et al.  Time-Reversal Ground-Penetrating Radar: Range Estimation With Cramér–Rao Lower Bounds , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Gerard T. Schuster,et al.  Poststack Migration Deconvolution , 1999 .

[19]  Zhiming Bai,et al.  An efficient step-length formula for correlative least-squares reverse time migration , 2016 .

[20]  Richard G. Plumb,et al.  A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[22]  Shuki Ronen,et al.  Least-squares Reverse Time Migration/inversion For Ocean Bottom Data: a Case Study , 2011 .

[23]  Isabelle Lecomte,et al.  Resolution and illumination analyses in PSDM A ray-based approach , 2008 .

[24]  S. Treitel PREDICTIVE DECONVOLUTION: THEORY AND PRACTICE , 1969 .

[25]  N. Whitmore Iterative Depth Migration By Backward Time Propagation , 1983 .

[26]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[27]  Gerard T. Schuster,et al.  Least-Squares Cross-Well Migration , 1993 .

[28]  Yue Wang,et al.  REVERSE-TIME MIGRATION , 1999 .

[29]  Robert G. Clapp,et al.  Regularized Least-squares Inversion For 3-D Subsalt Imaging , 2005 .

[30]  Yaxun Tang Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian , 2009 .

[31]  N. R. Hill,et al.  Prestack Gaussian‐beam depth migration , 2001 .

[32]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[33]  Sergey Fomel,et al.  Streaming prediction-error filters , 2016 .

[34]  Hao Hu,et al.  Prestack correlative least-squares reverse time migration , 2017 .

[35]  G. Schuster,et al.  Prestack migration deconvolution , 2001 .

[36]  Gerard T. Schuster,et al.  Plane-wave least-squares reverse-time migration , 2012 .

[37]  Gang Yao,et al.  Least‐squares reverse‐time migration in a matrix‐based formulation , 2015 .

[38]  M. Sacchi,et al.  Preconditioned acoustic least-squares two-way wave-equation migration with exact adjoint operator , 2018 .