The spin of the proton

Abstract The twenty years since the announcement of the proton spin crisis by the European Muon Collaboration has seen tremendous progress in our knowledge of the distribution of spin within the proton. The problem is reviewed, beginning with the original data and the suggestion that polarized gluons may play a crucial role in resolving the problem through the U ( 1 ) axial anomaly. The discussion continues to the present day where not only have strong limits been placed on the amount of polarized glue in the proton but the experimental determination of the spin content has also become much more precise. It is now clear that the origin of the discrepancy between the experiment and the naive expectation of the fraction of spin carried by the quarks and anti-quarks in the proton lies in the non-perturabtive structure of the proton. We explain how the features expected in a modern, relativistic and chirally symmetric description of nucleon structure naturally explain the current data.

[1]  J. Collins,et al.  The role of the axial anomaly in measuring spin-dependent parton distributions , 1988 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  G. A. Miller,et al.  Erratum: Pionic corrections to the MIT bag model: The (3,3) resonance , 1981 .

[4]  R. Young,et al.  Extrapolation of lattice QCD results beyond the power-counting regime , 2005, hep-lat/0501028.

[5]  Unraveling hadron structure with generalized parton distributions , 2005, hep-ph/0504030.

[6]  Chiral analysis of quenched baryon masses , 2002, hep-lat/0205017.

[7]  G. Altarelli,et al.  The anomalous gluon contribution to polarized leptoproduction , 1988 .

[8]  K. Kanaya,et al.  CP-PACS Collaboration: , 1997 .

[9]  E. al.,et al.  Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton , 2007, 0704.3599.

[10]  R. Young,et al.  Extracting nucleon strange and anapole form factors from world data. , 2006, Physical review letters.

[11]  Physical nucleon properties from lattice QCD. , 2003, Physical review letters.

[12]  A. Thomas,et al.  A possible resolution of the proton spin problem , 2007, 0709.4067.

[13]  S. Bass,et al.  The EMC spin effect , 1993 .

[14]  A. S. Nunes,et al.  The COMPASS Collaboration , 2006 .

[15]  E. Burtin,et al.  Spin asymmetry A1(d) and the spin-dependent structure function g1(d) of the deuteron at low values of x and Q**2 , 2007 .

[16]  A. Thomas The Pion cloud: Insights into hadron structure , 2007, 0711.2259.

[17]  K. Goeke,et al.  Pion mass dependence of the nucleon mass in the chiral quark soliton model , 2005 .

[18]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[19]  Alan D. Lopez,et al.  Erratum: Publisher's note: Study of exclusive charmless semileptonic B decays and extraction of |Vub| at CLEO (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76 (012007)) , 2007 .

[20]  Thomas,et al.  Spin structure functions and gluon exchange. , 1988, Physical review. D, Particles and fields.

[21]  M. Guidal,et al.  Nucleon Form Factors from Generalized Parton Distributions , 2004, hep-ph/0410251.

[22]  Aoki,et al.  Quenched light hadron spectrum , 1999, Physical review letters.

[23]  G. A. Miller,et al.  The Cloudy Bag Model. 1. The (3,3) Resonance , 1980 .

[24]  S. Bass,et al.  On the infrared contribution to the photon - gluon scattering and the proton spin content , 1991 .

[25]  R. Young,et al.  Strange electric form factor of the proton. , 2006, Physical review letters.

[26]  R. Sommer A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory , 1994 .

[27]  F. Myhrer,et al.  The spin content of the proton in the chiral bag , 1988 .

[28]  E. al.,et al.  Gluon polarization in the nucleon from quasi-real photoproduction of high-p(T) hadron pairs , 2005, hep-ex/0511028.

[29]  et al,et al.  Table 14 ; Precise determination of the spin structure function g(1) of the proton, deuteron and neutron , 2006, hep-ex/0609039.

[30]  H. Georgi,et al.  Hadron Masses in a Gauge Theory , 1975 .

[31]  R. J. Crewther Effects of Topological Charge in Gauge Theories , 1978 .

[32]  K. Goeke,et al.  Pion mass dependence of the nucleon form factors of the energy-momentum tensor in the chiral quark-soliton model , 2007 .

[33]  I. Cloet,et al.  Transversity quark distributions in a covariant quark–diquark model , 2007, 0708.3246.

[34]  W. Brooks,et al.  The Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF , 2005 .

[35]  Michele Arneodo,et al.  Accurate measurement of F 2 d/ F 2 p and R d - R p , 1997 .

[36]  G. A. Miller,et al.  Pionic corrections to the MIT bag model: The (3,3) resonance , 1980 .

[37]  G. S. Averichev,et al.  Strangeness production in STAR , 2008, 0809.0823.

[38]  E. al.,et al.  Measurement of the spin structure of the deuteron in the DIS region , 2005, hep-ex/0501073.

[39]  J. Speth,et al.  Mesonic Contributions to the Spin and Flavor Structure of the Nucleon , 1996 .

[40]  A. Thomas,et al.  Spin dependent structure functions in the cloudy bag model , 1988 .

[41]  W. J. Womersley,et al.  A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering , 1988 .

[42]  R. Young,et al.  Testing the standard model by precision measurement of the weak charges of quarks. , 2007, Physical review letters.

[43]  R. Jaffe,et al.  Baryon Structure in the Bag Theory , 1974 .

[44]  A. Thomas A limit on the pionic component of the nucleon through SU(3) flavour breaking in the sea , 1983 .