Extreme thermophiles as emerging metabolic engineering platforms.

Going forward, industrial biotechnology must consider non-model metabolic engineering platforms if it is to have maximal impact. This will include microorganisms that natively possess strategic physiological and metabolic features but lack either molecular genetic tools or such tools are rudimentary, requiring further development. If non-model platforms are successfully deployed, new avenues for production of fuels and chemicals from renewable feedstocks or waste materials will emerge. Here, the challenges and opportunities for extreme thermophiles as metabolic engineering platforms are discussed.

[1]  E. Mertens,et al.  Pyrophosphate‐dependent phosphofructokinase, an anaerobic glycolytic enzyme? , 1991, FEBS letters.

[2]  Edward J. O'Brien,et al.  Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction , 2013, Molecular systems biology.

[3]  David J. Krause,et al.  Augmenting the Genetic Toolbox for Sulfolobus islandicus with a Stringent Positive Selectable Marker for Agmatine Prototrophy , 2013, Applied and Environmental Microbiology.

[4]  M. Adams,et al.  Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases , 2011, Applied and Environmental Microbiology.

[5]  Israel M. Scott,et al.  Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases , 2017, Microbial biotechnology.

[6]  M. Adams,et al.  Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome , 2018, Biotechnology and bioengineering.

[7]  B. Siebers,et al.  Sulfolobus – A Potential Key Organism in Future Biotechnology , 2017, Front. Microbiol..

[8]  M. Adams,et al.  Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus , 2016, Front. Microbiol..

[9]  Richard J. Giannone,et al.  Discrete and Structurally Unique Proteins (Tāpirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose* , 2015, The Journal of Biological Chemistry.

[10]  Hui Xu,et al.  Natural transformation of Thermotoga sp. strain RQ7 , 2014, BMC Biotechnology.

[11]  J. Reeve,et al.  Thermococcus kodakarensis Genetics: TK1827-Encoded β-Glycosidase, New Positive-Selection Protocol, and Targeted and Repetitive Deletion Technology , 2009, Applied and Environmental Microbiology.

[12]  Didier Flament,et al.  Genetic Manipulations of the Hyperthermophilic Piezophilic Archaeon Thermococcus barophilus , 2014, Applied and Environmental Microbiology.

[13]  Haruyuki Atomi,et al.  Targeted Gene Disruption by Homologous Recombination in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1 , 2003, Journal of bacteriology.

[14]  Y. Demirel,et al.  Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima , 2018, Applied and Environmental Microbiology.

[15]  Qihong Huang,et al.  Development of a Simvastatin Selection Marker for a Hyperthermophilic Acidophile, Sulfolobus islandicus , 2011, Applied and Environmental Microbiology.

[16]  R. C. Hopkins,et al.  Homologous Expression of a Subcomplex of Pyrococcus furiosus Hydrogenase that Interacts with Pyruvate Ferredoxin Oxidoreductase , 2011, PloS one.

[17]  Dongmei Han,et al.  Construction and transformation of a Thermotoga-E. coli shuttle vector , 2012, BMC Biotechnology.

[18]  M. Adams,et al.  Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. , 2016, Metabolic engineering.

[19]  Robert M Kelly,et al.  Single gene insertion drives bioalcohol production by a thermophilic archaeon , 2014, Proceedings of the National Academy of Sciences.

[20]  P. Ruoff,et al.  Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus , 2017, PloS one.

[21]  B. Davison,et al.  Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites , 2018, MicrobiologyOpen.

[22]  Christopher P. Long,et al.  13C metabolic flux analysis of three divergent extremely thermophilic bacteria: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252. , 2017, Metabolic engineering.

[23]  M. Adams,et al.  Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic archaea. , 2016, Metabolic engineering.

[24]  C. Schleper,et al.  Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus , 2006, Extremophiles.

[25]  Dongmei Han,et al.  Development of a pyrE-based selective system for Thermotoga sp. strain RQ7 , 2016, Extremophiles.

[26]  R. Kelly,et al.  Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species* , 2016, The Journal of Biological Chemistry.

[27]  C. Schleper,et al.  Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression , 2016, G3: Genes, Genomes, Genetics.

[28]  M. Adams,et al.  Impact of growth mode, phase, and rate on the metabolic state of the extremely thermophilic archaeon Pyrococcus furiosus. , 2017, Biotechnology and bioengineering.

[29]  Deborah A. Weighill,et al.  Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses , 2018, Applied and Environmental Microbiology.

[30]  M. Adams,et al.  A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii , 2016, Applied and Environmental Microbiology.

[31]  Karsten Zengler,et al.  Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima , 2013, Front. Microbiol..

[32]  Israel M. Scott,et al.  Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii , 2017, Applied and Environmental Microbiology.

[33]  Yao Xiao,et al.  Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water , 2015, Life.

[34]  M. Rossi,et al.  An Autonomously Replicating Transforming Vector forSulfolobus solfataricus , 1998, Journal of bacteriology.

[35]  Janet Westpheling,et al.  Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii , 2014, Proceedings of the National Academy of Sciences.

[36]  Robert M. Kelly,et al.  Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes , 2015, Applied and Environmental Microbiology.

[37]  Edward J. O'Brien,et al.  COBRAme: A computational framework for genome-scale models of metabolism and gene expression , 2017, bioRxiv.

[38]  Israel M. Scott,et al.  Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii , 2018, Metabolic engineering communications.

[39]  J. Reeve,et al.  4.8 Genetic Tools and Manipulations of the Hyperthermophilic Heterotrophic Archaeon Thermococcus kodakarensis , 2011 .

[40]  P. Blum,et al.  Contribution of Pentose Catabolism to Molecular Hydrogen Formation by Targeted Disruption of Arabinose Isomerase (araA) in the Hyperthermophilic Bacterium Thermotoga maritima , 2016, Applied and Environmental Microbiology.

[41]  H. Atomi,et al.  Identification of a pyrophosphate-dependent kinase and its donor selectivity determinants , 2018, Nature Communications.

[42]  S. Albers,et al.  Gene deletions leading to a reduction in the number of cyclopentane rings in Sulfolobus acidocaldarius tetraether lipids , 2018, FEMS microbiology letters.

[43]  H. Atomi,et al.  Identification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis. , 2017, Journal of bioscience and bioengineering.

[44]  Robert M Kelly,et al.  A hybrid synthetic pathway for butanol production by a hyperthermophilic microbe. , 2015, Metabolic engineering.

[45]  J. W. Picking,et al.  An Archaeal Fluoride-Responsive Riboswitch Provides an Inducible Expression System for Hyperthermophiles , 2018, Applied and Environmental Microbiology.

[46]  Jeffrey D. Orth,et al.  In silico method for modelling metabolism and gene product expression at genome scale , 2012, Nature Communications.

[47]  M. Adams,et al.  Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii , 2018, Extremophiles.

[48]  Stefan P. Albaum,et al.  A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L‐fucose versus D‐glucose , 2016, Molecular microbiology.

[49]  M. Adams,et al.  Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3‐hydroxypropionate by metabolically engineered Pyrococcus furiosus , 2016, Biotechnology and bioengineering.

[50]  Michael W. W. Adams,et al.  Engineering a Hyperthermophilic Archaeon for Temperature-Dependent Product Formation , 2012, mBio.

[51]  Abhrajyoti Ghosh,et al.  Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. , 2012, Environmental microbiology.

[52]  T. Fukui,et al.  Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. , 2005, Journal of biotechnology.

[53]  T. Fukui,et al.  Disruption of a Sugar Transporter Gene Cluster in a Hyperthermophilic Archaeon Using a Host-Marker System Based on Antibiotic Resistance , 2007, Journal of bacteriology.

[54]  H. Atomi,et al.  Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination , 2018, Journal of bacteriology.

[55]  M. Adams,et al.  The renaissance of life near the boiling point – at last, genetics and metabolic engineering , 2016, Microbial biotechnology.

[56]  E. Bayer,et al.  Thermophilic lignocellulose deconstruction. , 2014, FEMS microbiology reviews.

[57]  J. Liao,et al.  Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism , 2018, Proceedings of the National Academy of Sciences.

[58]  A. Panico,et al.  Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana , 2015, International journal of molecular sciences.

[59]  S. Albers,et al.  Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius , 2010, Extremophiles.

[60]  R. Kelly,et al.  Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose , 2017, Microbial biotechnology.

[61]  H. Sakuraba,et al.  Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. , 2000, Journal of biochemistry.

[62]  Z. Jia,et al.  ADP-dependent 6-Phosphofructokinase from Pyrococcus horikoshii OT3 , 2009, The Journal of Biological Chemistry.

[63]  P. Forterre,et al.  Construction of a Shuttle Vector for, and Spheroplast Transformation of, the Hyperthermophilic Archaeon Pyrococcus abyssi , 2002, Applied and Environmental Microbiology.

[64]  H. Atomi,et al.  Engineering of the Hyperthermophilic Archaeon Thermococcus kodakarensis for Chitin-Dependent Hydrogen Production , 2017, Applied and Environmental Microbiology.

[65]  M. Wagner,et al.  Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway , 2017, Applied and Environmental Microbiology.

[66]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[67]  D. Schomburg,et al.  Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus , 2012, PloS one.

[68]  H. Atomi,et al.  Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis , 2018, Extremophiles.

[69]  Wolfgang Wiechert,et al.  Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile. , 2011, Current opinion in biotechnology.

[70]  K. Okano,et al.  A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures , 2017, Journal of bacteriology.

[71]  T. Fukui,et al.  Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. , 2004, Archaea.

[72]  M. Jebbar,et al.  Development of an Effective 6-Methylpurine Counterselection Marker for Genetic Manipulation in Thermococcus barophilus , 2018, Genes.

[73]  M. Wagner,et al.  Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius , 2012, Front. Microbio..

[74]  Richard J. Giannone,et al.  Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction , 2017, Applied and Environmental Microbiology.

[75]  P. Blum,et al.  Targeted Disruption of the α-Amylase Gene in the Hyperthermophilic Archaeon Sulfolobus solfataricus , 2003 .

[76]  Michael W. W. Adams,et al.  Recombinogenic Properties of Pyrococcus furiosus Strain COM1 Enable Rapid Selection of Targeted Mutants , 2012, Applied and Environmental Microbiology.