Calibration of erroneous branch parameters utilising learning automata theory

Incorrectness of simulation model parameters can lead to erroneous results in power system operation and planning studies. Therefore, model parameters should be verified according to measurements obtained from the actual system. Mismatches between simulation results and corresponding field measurements can be considered as a sign for the necessity of model verification. Inaccurate branch parameters in simulation models can lead to misguided results in protection, operation and planning studies. An efficient algorithm is proposed in this study for detection and correction of erroneous branch parameters. First, suspicious parameters are selected utilising a sensitivity-based probabilistic method. Applying learning automata theory, selection probabilities will be modified according to simulation responses. A novel formulation is proposed for calculating selection probabilities according to simulation responses. Afterwards, selected parameters are modified by utilising an iterative Newton–Raphson scheme. Unlike state estimation-based methods, required sensitivities are calculated numerically. Therefore, the explicit mathematical formulation of measurements dependency on model parameters is unnecessary. The procedure of erroneous parameter detection and correction will be continued until the value of sum of squared errors (SSE), the objective function in optimisation procedure, becomes sufficiently small. Simulation results demonstrate the high efficiency of the proposed method.

[1]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[2]  Bjarne A. Foss,et al.  Parameter ranking by orthogonalization - Applied to nonlinear mechanistic models , 2008, Autom..

[3]  Thomas J. Harris,et al.  Selection of simplified models: I. Analysis of model‐selection criteria using mean‐squared error , 2011 .

[4]  A. G. Expósito,et al.  Power system parameter estimation: a survey , 2000 .

[5]  David A. Elston Sensitivity analysis in the presence of correlated parameter estimates , 1992 .

[6]  Bashar Zahawi,et al.  Non-invasive identification of turbo-generator parameters from actual transient network data , 2015 .

[7]  Felix F. Wu,et al.  Estimation of parameter errors from measurement residuals in state estimation (power systems) , 1992 .

[8]  M R M Castillo,et al.  Offline Detection, Identification, and Correction of Branch Parameter Errors Based on Several Measurement Snapshots , 2011, IEEE Transactions on Power Systems.

[9]  Costas Kravaris,et al.  Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..

[10]  Thomas J. Harris,et al.  Selection of optimal parameter set using estimability analysis and MSE-based model-selection criterion , 2011 .

[11]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[12]  Di Shi,et al.  Transmission line parameter identification using PMU measurements , 2011, ArXiv.

[13]  Yuan Liao,et al.  On-line estimation of transmission line parameters, temperature and sag using PMU measurements , 2012 .

[14]  Thomas J. Harris,et al.  SELECTION OF SIMPLIFIED MODELS: II. DEVELOPMENT OF A MODEL SELECTION CRITERION BASED ON MEAN SQUARED ERROR , 2011 .

[15]  J. S. Edmonds,et al.  Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .

[16]  A. M. El-Zonkoly Power system model validation for power quality assessment applications using genetic algorithm , 2005, Expert Syst. Appl..

[17]  Vaithianathan Venkatasubramanian,et al.  A new framework for estimation of generator dynamic parameters , 2000 .

[18]  Eric D. Smith,et al.  Sensitivity Analysis, a Powerful System Validation Technique , 2007 .

[19]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.