Critical assessment of charge mobility extraction in FETs.

[1]  Matthew J. Bruzek,et al.  Negative Isotope Effect on Field‐Effect Hole Transport in Fully Substituted 13C‐Rubrene , 2017 .

[2]  H. Sirringhaus,et al.  High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. , 2017, Nature materials.

[3]  Xin Zhang,et al.  2D Insulator–Metal Transition in Aerosol‐Jet‐Printed Electrolyte‐Gated Indium Oxide Thin Film Transistors , 2017 .

[4]  K. S. Tikhonov,et al.  Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements , 2016, Nature Communications.

[5]  Thomas N Jackson,et al.  Mobility overestimation due to gated contacts in organic field-effect transistors , 2016, Nature Communications.

[6]  Y. Gartstein,et al.  Charge carrier coherence and Hall effect in organic semiconductors , 2016, Scientific Reports.

[7]  H. Schmidt,et al.  Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. , 2015, Chemical Society reviews.

[8]  Takayuki Okachi,et al.  Device operation mechanism of field-effect transistors with high mobility donor-acceptor polymer semiconductors , 2015, SPIE Organic Photonics + Electronics.

[9]  S. Ciuchi,et al.  The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials , 2015, 1505.02686.

[10]  W. Xie,et al.  High conductance 2D transport around the Hall mobility peak in electrolyte-gated rubrene crystals. , 2014, Physical review letters.

[11]  Jaeyoung Jang,et al.  Temperature-dependent Hall and field-effect mobility in strongly coupled all-inorganic nanocrystal arrays. , 2014, Nano letters.

[12]  V. Podzorov,et al.  Organic single crystals: Addressing the fundamentals of organic electronics , 2013 .

[13]  Masakazu Yamagishi,et al.  Band-like transport in solution-crystallized organic transistors , 2012 .

[14]  H. Yi,et al.  Dynamic character of charge transport parameters in disordered organic semiconductor field-effect transistors. , 2012, Physical chemistry chemical physics : PCCP.

[15]  H. Yi,et al.  Vacuum Lamination Approach to Fabrication of High‐Performance Single‐Crystal Organic Field‐Effect Transistors , 2011, Advanced materials.

[16]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[17]  J. Brédas,et al.  Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. , 2010, Journal of the American Chemical Society.

[18]  P. Ruden,et al.  Comparison of the Mobility–Carrier Density Relation in Polymer and Single‐Crystal Organic Transistors Employing Vacuum and Liquid Gate Dielectrics , 2009 .

[19]  Zhenan Bao,et al.  Organic Field-Effect Transistors , 2007 .

[20]  Alessandro Troisi,et al.  Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. , 2006, Physical review letters.

[21]  J. Rogers,et al.  Hall effect in the accumulation layers on the surface of organic semiconductors. , 2005, Physical review letters.

[22]  C. Frisbie,et al.  Transport properties of single-crystal tetracene field-effect transistors with silicon dioxide gate dielectric , 2004 .

[23]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[24]  K. Pernstich,et al.  Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals , 2003, cond-mat/0306206.

[25]  S. Sysoev,et al.  Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s , 2003, cond-mat/0306192.

[26]  V. Podzorov,et al.  Field-effect transistors on rubrene single crystals with parylene gate insulator , 2002, cond-mat/0210555.

[27]  Jan Genoe,et al.  On the Extraction of Charge Carrier Mobility in High‐Mobility Organic Transistors , 2016, Advanced materials.

[28]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .