DNA topology influences molecular machine lifetime in human serum

Lifetimes and operational performance were investigated for a DNA nanomachine and linear probe in human serum and blood to elucidate design principles for future biomedical applications of DNA-based devices.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  F. Pohl,et al.  Temperature dependence of the activity of DNA-modifying enzymes: endonucleases and DNA ligase. , 1982, European journal of biochemistry.

[3]  I. T. Young,et al.  Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. , 1995, Biophysical journal.

[4]  L. Orgel,et al.  The stability of different forms of double-stranded decoy DNA in serum and nuclear extracts. , 1992, Nucleic acids research.

[5]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[6]  K. Shinozuka,et al.  Physicochemical properties of phosphorothioate oligodeoxynucleotides. , 1988, Nucleic acids research.

[7]  F. Simmel Towards biomedical applications for nucleic acid nanodevices. , 2007, Nanomedicine.

[8]  Alberto Credi,et al.  Molecular Machines and Motors , 2001 .

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[11]  Daniel A. Heller,et al.  Treating metastatic cancer with nanotechnology , 2011, Nature Reviews Cancer.

[12]  Markus Sauer,et al.  Spectroscopic study and evaluation of red-absorbing fluorescent dyes. , 2003, Bioconjugate chemistry.

[13]  Clifford S. Deutschman,et al.  Transcription , 2003, The Quran: Word List (Volume 3).

[14]  T. Liedl,et al.  DNA nanotubes as intracellular delivery vehicles in vivo. , 2015, Biomaterials.

[15]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[16]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[17]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[18]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[19]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[20]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  A method to study in vivo stability of DNA nanostructures☆ , 2013, Methods.

[23]  H. W. Lam,et al.  Catalytic 1,4-Rhodium(III) Migration Enables 1,3-Enynes to Function as One-Carbon Oxidative Annulation Partners in C–H Functionalizations , 2014, Angewandte Chemie.

[24]  Yamuna Krishnan,et al.  Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways. , 2014, Nanoscale.

[25]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[26]  Baker,et al.  Pharmacodynamics of recombinant human DNase I in serum , 1998, Clinical and experimental immunology.

[27]  T. LaBean,et al.  Nucleic acid-based nanoengineering: novel structures for biomedical applications , 2011, Interface Focus.

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[30]  M. Hashida,et al.  Pharmacokinetics and targeted delivery of proteins and genes , 1996 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Ben L Feringa,et al.  Unidirectional light-driven molecular motors based on overcrowded alkenes. , 2014, Topics in current chemistry.

[33]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[34]  M. Behlke,et al.  Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. , 2005, Biochemical and biophysical research communications.

[35]  S. Howorka,et al.  Membrane-Spanning DNA Nanopores with Cytotoxic Effect , 2014, Angewandte Chemie.

[36]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[37]  H. Sleiman,et al.  DNA nanostructure serum stability: greater than the sum of its parts. , 2013, Chemical communications.

[38]  Andrew McCaskie,et al.  Nanomedicine , 2005, BMJ.

[39]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[40]  Bernard Yurke,et al.  A DNA-based molecular device switchable between three distinct mechanical states , 2002 .

[41]  F. Simmel,et al.  Synthetic in vitro transcription circuits , 2012, Transcription.

[42]  M. Bathe,et al.  Designer nucleic acids to probe and program the cell. , 2012, Trends in cell biology.

[43]  O. Urakawa,et al.  Small - , 2007 .

[44]  Alberto Credi,et al.  Molecular Machines and Motors: Recent Advances and Perspectives , 2014 .

[45]  Tim Liedl,et al.  Cellular Uptake of Tile-Assembled DNA Nanotubes , 2014, Nanomaterials.

[46]  N. Kurnick Desoxyribonuclease activity of sera of man and some other species. , 1953, Archives of biochemistry and biophysics.

[47]  Jens Kurreck,et al.  Antisense technologies. Improvement through novel chemical modifications. , 2003, European journal of biochemistry.

[48]  Sandhya P Koushika,et al.  A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. , 2011, Nature communications.

[49]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[50]  H. Sleiman,et al.  Development and characterization of gene silencing DNA cages. , 2014, Biomacromolecules.

[51]  Kazunori Kataoka,et al.  Supramolecular nanodevices: from design validation to theranostic nanomedicine. , 2011, Accounts of chemical research.

[52]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[53]  P. Dear,et al.  CyDNA: Synthesis and Replication of Highly Cy-Dye Substituted DNA by an Evolved Polymerase , 2010, Journal of the American Chemical Society.

[54]  Xiang Zhou,et al.  DNA nanomachines as evolved molecular beacons for in vitro and in vivo detection. , 2014, Talanta.

[55]  R. Misra,et al.  Biomaterials , 2008 .

[56]  Interface Focus , 2022 .

[57]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[58]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[59]  G. King,et al.  Construction, Stability, and Activity of Multivalent Circular Anticoagulant Aptamers* , 2004, Journal of Biological Chemistry.

[60]  W. Marsden I and J , 2012 .

[61]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[62]  Baoquan Ding,et al.  Functional DNA nanostructures for photonic and biomedical applications. , 2013, Small.

[63]  J. Shaw,et al.  Modified deoxyoligonucleotides stable to exonuclease degradation in serum. , 1991, Nucleic acids research.