Enhancing rock stress understanding through numerical analysis

Numerical analysis provides a useful tool to enhance the understanding of rock stress. This paper presents several applications of numerical analysis to evaluate the influence of different factors, such as topology, excavation, loading history and geologic structure, on the state of stress in rock. The discussion focuses on the numerical technique known as the explicit, dynamic solution scheme, and describes how this scheme is well suited to simulate these factors. Recent advances with the explicit solution method are also presented, including the correlation of this method to acoustic and microseismic data to determine stress state information. Future development involves the extension of three-dimensional explicit solution models to simulate large-scale regions of a rock mass. An approach to this development is outlined.

[1]  J. F. Hazzard,et al.  Seismic Validation of Micromechanical Models , 2001 .

[2]  P. A. Cundall,et al.  Stress Measurement Schemes For Jointed And Fractured Rock , 1986 .

[3]  P A Cundall,et al.  RATIONAL DESIGN OF TUNNEL SUPPORTS: A COMPUTER MODEL FOR ROCK MASS BEHAVIOUR USING INTERACTIVE GRAPHICS FOR THE INPUT AND OUTPUT OF GEOMETRICAL DATA , 1974 .

[4]  Rune M. Holt,et al.  Field Application of a Novel Core-based In-Situ Stress Estimation Technique , 2002 .

[5]  P. A. Cundall,et al.  A DISCONTINUOUS FUTURE FOR NUMERICAL MODELLING IN GEOMECHANICS , 2001 .

[6]  P Cundall,et al.  Explicit finite-difference methods in geomechanics , 1976 .

[7]  Alexander Lavrov,et al.  The Kaiser effect in rocks : principles and stress estimation techniques , 2003 .

[8]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[9]  R. P. Young,et al.  Simulating acoustic emissions in bonded-particle models of rock , 2000 .

[10]  Heinz Konietzky,et al.  In situ stress field in the Wellenberg area , 1996 .

[11]  K. R. Saxena Distinct Element Modelling in Geomechanics , 1999 .

[12]  Peter A. Cundall,et al.  Numerical experiments on rough joints in shear using a bonded particle model , 2000 .

[13]  Lanru Jing,et al.  A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering , 2003 .

[14]  P. A. Cundall,et al.  Discrete Particle and Laboratory Modelling of Core Mechanics , 2000 .

[15]  C. J. Kenter,et al.  Core-Based Determination of In-Situ Stress Magnitudes , 2001 .

[16]  J. Kaiser Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen , 1953 .

[17]  P. Cundall A computer model for simulating progressive, large-scale movements in blocky rock systems , 1971 .

[18]  Rune M. Holt,et al.  Use of a Discrete Particle Model to Assess Feasibility of Core Based Stress Determination , 2001 .

[19]  Lg Alexander,et al.  Stress Measurement in a Bored Raise at the Mount Isa Mine , 1976 .

[20]  J. Knott,et al.  Fundamentals of Fracture Mechanics , 2008 .

[21]  Stephen D. McKinnon,et al.  Analysis of stress measurements using a numerical model methodology , 2001 .

[22]  B. Mayeur,et al.  Measurement and modelling of in situ rock stresses in the Ambin Massif, Franco-Italian Alps , 1999 .