Statistical inference on progressive‐stress accelerated life testing for the logistic exponential distribution under progressive type‐II censoring

[1]  H. M. Moustafa,et al.  Bayes Inference in Constant Partially Accelerated Life Tests for the Generalized Exponential Distribution with Progressive Censoring , 2014 .

[2]  Yincai Tang,et al.  Optimal Multiple Constant-Stress Accelerated Life Tests for Generalized Exponential Distribution , 2014, Commun. Stat. Simul. Comput..

[3]  Ali A. Ismail Statistical analysis of Type-I progressively hybrid censored data under constant-stress life testing model , 2019, Physica A: Statistical Mechanics and its Applications.

[4]  S. E. Abu-Youssef,et al.  Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring , 2016 .

[5]  N. Balakrishnan,et al.  A Note on the Prediction of Censored Exponential Lifetimes in a Simple Step-stress Model with Type-II Censoring , 2018 .

[6]  R. King,et al.  Kurtosis of the logistic-exponential survival distribution , 2016 .

[7]  Essam Khalaf Al-Hussaini,et al.  Inference for a progressive stress model from Weibull distribution under progressive type-II censoring , 2011, J. Comput. Appl. Math..

[8]  Do Sun Bai,et al.  Optimum simple step-stress accelerated life tests with censoring , 1989 .

[9]  M. M. Mohie-Eldin,et al.  Classical and Bayesian inference on progressive‐stress accelerated life testing for the extension of the exponential distribution under progressive type‐II censoring , 2017, Qual. Reliab. Eng. Int..

[10]  Sanku Dey,et al.  Different estimation methods for exponentiated Rayleigh distribution under constant-stress accelerated life test , 2018, Qual. Reliab. Eng. Int..

[11]  Xiang-kang Yin,et al.  Some Aspects of Accelerated Life Testing by Progressive Stress , 1987, IEEE Transactions on Reliability.

[12]  J. B. Singh,et al.  A NHPP based software reliability model and optimal release policy with logistic–exponential test coverage under imperfect debugging , 2014, Int. J. Syst. Assur. Eng. Manag..

[13]  E. K. Ahmed Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach , 2014 .

[14]  N Mantel,et al.  A logistic-exponential model for use with response-time data involving regressor variables. , 1973, Biometrics.

[15]  Alaa H. Abdel-Hamid,et al.  One-sample Bayesian prediction intervals based on progressively type-II censored data from the half-logistic distribution under progressive stress model , 2015 .

[16]  Yingjie Lan,et al.  The logistic–exponential survival distribution , 2008 .

[17]  Abdallah A. Abdel-Ghaly,et al.  Applying the copula approach on step stress accelerated life test under type II censoring , 2018, Commun. Stat. Simul. Comput..

[18]  Alan Watkins,et al.  On constant stress accelerated life tests terminated by Type II censoring at one of the stress levels , 2008 .

[19]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring , 2014 .

[20]  Cm Kim,et al.  ANALYSES OF ACCELERATED LIFE TEST DATA UNDER TWO FAILURE MODES , 2002 .

[21]  Tsai-Hung Fan,et al.  Statistical Inference on Constant Stress Accelerated Life Tests under Generalized Gamma Lifetime Distributions , 2013, Qual. Reliab. Eng. Int..