Spatially Coupled LDPC Codes with Sub-Block Locality

A new type of spatially-coupled (SC) LDPC codes motivated by practical storage applications is presented. SC-LDPCL codes (suffix 'L' stands for locality) can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus offering flexible access to the coded information alongside the strong reliability of the global full-block decoding. Toward that, we propose constructions of SC-LDPCL codes that allow controlling the trade-off between local and global correction performance. In addition to local and global decoding, the paper develops a density-evolution analysis for a mode we call semi-global decoding, in which the decoder has access to the requested sub-block plus a prescribed number of sub-blocks around it. SC-LDPCL codes are also studied under a channel model with variability across sub-blocks, for which decoding-performance lower bounds are derived.

[1]  Yuval Cassuto,et al.  LDPC Codes with Local and Global Decoding , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[2]  Michael Lentmaier,et al.  New codes on graphs constructed by connecting spatially coupled chains , 2012, 2012 Information Theory and Applications Workshop.

[3]  Michael Lentmaier,et al.  Code Design Based on Connecting Spatially Coupled Graph Chains , 2019, IEEE Transactions on Information Theory.

[4]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[5]  Kenta Kasai,et al.  Multi-dimensional spatially-coupled codes , 2013, 2013 IEEE International Symposium on Information Theory.

[6]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[7]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[8]  Laurent Schmalen,et al.  Laterally connected spatially coupled code chains for transmission over unstable parallel channels , 2014, 2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[9]  Lara Dolecek,et al.  Finite-Length Construction of High Performance Spatially-Coupled Codes via Optimized Partitioning and Lifting , 2019, IEEE Transactions on Communications.

[10]  Michael Lentmaier,et al.  AWGN channel analysis of terminated LDPC convolutional codes , 2011, 2011 Information Theory and Applications Workshop.

[11]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[12]  Ying Li,et al.  Spatially Coupled LDPC Codes Constructed by Parallelly Connecting Multiple Chains , 2015, IEEE Communications Letters.

[13]  Pablo M. Olmos,et al.  Continuous Transmission of Spatially Coupled LDPC Code Chains , 2016, IEEE Transactions on Communications.

[14]  Michael Lentmaier,et al.  Spatially Coupled LDPC Codes Constructed From Protographs , 2014, IEEE Transactions on Information Theory.

[15]  Martin Bossert,et al.  Multi-block interleaved codes for local and global read access , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[16]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[17]  Paul H. Siegel,et al.  Channel Models for Multi-Level Cell Flash Memories Based on Empirical Error Analysis , 2016, IEEE Transactions on Communications.

[18]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[19]  Paul H. Siegel,et al.  Windowed Decoding of Spatially Coupled Codes , 2011, IEEE Transactions on Information Theory.

[20]  Michael Lentmaier,et al.  Implementation aspects of LDPC convolutional codes , 2008, IEEE Transactions on Communications.

[21]  Wayne E. Stark,et al.  Channels with block interference , 1984, IEEE Trans. Inf. Theory.

[22]  Gerhard Fettweis,et al.  Efficient message passing scheduling for terminated LDPC convolutional codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[23]  Lara Dolecek,et al.  Absorbing set characterization of array-based spatially coupled LDPC codes , 2014, 2014 IEEE International Symposium on Information Theory.

[24]  Aravind R. Iyengar,et al.  Windowed erasure decoding of LDPC Convolutional Codes , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[25]  Lara Dolecek,et al.  Multi-Dimensional Spatially-Coupled Code Design: Enhancing the Cycle Properties , 2020, IEEE Transactions on Communications.

[26]  Mario Blaum,et al.  Integrated interleaved codes as locally recoverable codes: properties and performance , 2016, Int. J. Inf. Coding Theory.

[27]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.