Oligomerization and carbonization of polycyclic aromatic hydrocarbons at high pressure and temperature

[1]  A. Shatskiy,et al.  Study of pocyclic aromatic hydrocarbons at a pressure of 6–9 GPa with X-ray diffraction and synchrotron radiation , 2014, Doklady Earth Sciences.

[2]  J. Akroyd,et al.  Phase change of polycyclic aromatic hydrocarbon clusters by mass addition , 2014 .

[3]  J. Akroyd,et al.  Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dynamics study , 2014 .

[4]  J. Shigley,et al.  Recent Advances in Understanding the Geology of Diamonds , 2013 .

[5]  H. Mao,et al.  Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors , 2013, Nature Communications.

[6]  V. Kamenetsky,et al.  Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle , 2013 .

[7]  Theodoros G. Soldatos,et al.  Correction: Corrigendum: Src activation by β-adrenoreceptors is a key switch for tumour metastasis , 2013, Nature Communications.

[8]  S. Jacobsen,et al.  Effect of Water on the Sound Velocities of Ringwoodite in the Transition Zone , 2013 .

[9]  M. Hirschmann,et al.  Carbon-dioxide-rich silicate melt in the Earth’s upper mantle , 2013, Nature.

[10]  Adrian P. Jones,et al.  Carbonate Melts and Carbonatites , 2012 .

[11]  M. Kraft,et al.  A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. , 2012, Physical chemistry chemical physics : PCCP.

[12]  D. Yamazaki,et al.  High pressure generation using scaled-up Kawai-cell , 2011 .

[13]  T. Kikegawa,et al.  In situ observation of a garnet/perovskite transition in CaGeO3 , 2011, PCM 2011.

[14]  A. V. Bovkun,et al.  Polyphase hydrocarbon inclusions in garnet from the Mir diamondiferous pipe , 2011 .

[15]  K. Litasov Physicochemical conditions for melting in the Earth’s mantle containing a C–O–H fluid (from experimental data) , 2011 .

[16]  K. Litasov,et al.  The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonatite liquid in the deep mantle , 2010 .

[17]  Vinod M. Janardhanan,et al.  A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency , 2010 .

[18]  K. Litasov,et al.  Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths , 2009 .

[19]  V. Zubkov On the probable lifting of deep hydrocarbons into the crustal waveguide , 2009 .

[20]  V. Kutcherov,et al.  Methane-derived hydrocarbons produced under upper-mantle conditions , 2009 .

[21]  K. Litasov,et al.  Phase relations in the peridotite–carbonate–chloride system at 7.0–16.5 GPa and the role of chlorides in the origin of kimberlite and diamond , 2009 .

[22]  Zhenhao Duan,et al.  A model for C-O-H fluid in the Earth's mantle , 2009 .

[23]  D. Lis,et al.  The Chemical Diversity of Comets: Synergies Between Space Exploration and Ground-based Radio Observations , 2009, 0901.2205.

[24]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[25]  U. Golla‐Schindler,et al.  Metal saturation in the upper mantle , 2007, Nature.

[26]  Sergei Izvekov,et al.  The effect of temperature on nanoparticle clustering , 2007 .

[27]  M. Aigner,et al.  Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry. , 2007, Rapid communications in mass spectrometry : RCM.

[28]  S. Karato,et al.  The effect of water on the electrical conductivity of olivine , 2005, Nature.

[29]  M. Mezouar,et al.  High-pressure and high-temperature equation of state and phase diagram of solid benzene , 2005 .

[30]  K. Sugitani,et al.  Shock-induced dehydrogenation of polycyclic aromatic hydrocarbons with or without serpentine: Implications for planetary accretion , 2005 .

[31]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  D. Wales,et al.  Stacked clusters of polycyclic aromatic hydrocarbon molecules. , 2004, The journal of physical chemistry. A.

[33]  D. Rubie,et al.  Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle , 2004, Nature.

[34]  S. Karato,et al.  Water-Induced Fabric Transitions in Olivine , 2001, Science.

[35]  D. Kohlstedt,et al.  Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime , 2000 .

[36]  Pascale Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2000 .

[37]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[38]  T. Lim,et al.  Water Ice, Silicate, and Polycyclic Aromatic Hydrocarbon Emission Featuresin the Infrared Space Observatory Spectrum of the Carbon-richPlanetary Nebula CPD –56°8032 , 1999 .

[39]  E. Herbst,et al.  The Abundance of Very Large Hydrocarbons and Carbon Clusters in the Diffuse Interstellar Medium , 1996 .

[40]  Eitan Grossman,et al.  Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition , 1996 .

[41]  S. Pizzarello,et al.  Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. , 1992, Geochimica et cosmochimica acta.

[42]  S. Saxena,et al.  A unified equation of state for fluids of C-H-O-N-S-Ar composition and their mixtures up to very high temperatures and pressures , 1992 .

[43]  Li,et al.  Radial distribution function of amorphous carbon. , 1990, Physical review letters.

[44]  H. Kroto,et al.  Dust around AFGL 2688, molecular shielding, and the production of carbon chain molecules , 1990 .

[45]  S. Sandford,et al.  Interstellar Polycyclic Aromatic Hydrocarbons and Carbon in Interplanetary Dust Particles and Meteorites , 1987, Science.

[46]  W. Mallard,et al.  Intermolecular potential calculations for polycyclic aromatic hydrocarbons , 1984 .

[47]  Steven R. Bohlen,et al.  The quartz ⇆ coesite transformation: A precise determination and the effects of other components , 1982 .

[48]  D. B. Fischbach,et al.  Observation of Raman band shifting with excitation wavelength for carbons and graphites , 1981 .

[49]  W. Bassett,et al.  High‐Pressure Calibration: A Critical Review , 1972 .

[50]  J. Oró,et al.  Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite , 1971, Nature.

[51]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[52]  G. Kennedy,et al.  Melting of Three Organic Compounds at High Pressures , 1970 .

[53]  G. Kennedy,et al.  Determination of the Pressure of the Barium I‐II Transition with Single‐Stage Piston‐Cylinder Apparatus , 1967 .

[54]  R. Dasgupta Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time , 2013 .

[55]  M. Walter,et al.  Diamonds and the Geology of Mantle Carbon , 2013 .

[56]  H. Keppler,et al.  Carbon in Silicate Melts , 2013 .

[57]  K. Mimura,et al.  Behavior of polycyclic aromatic hydrocarbons at impact shock: Its implication for survival of organic materials delivered to the early Earth , 2005 .

[58]  J. Boudou,et al.  Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures , 2004 .

[59]  Michael Frenklach,et al.  Nucleation of soot: Molecular dynamics simulations of pyrene dimerization , 2002 .

[60]  A. Marzec Intermolecular interactions of aromatic hydrocarbons in carbonaceous materials: A molecular and quantum mechanics , 2000 .

[61]  P. Ehrenfreund,et al.  Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. , 1997, Advances in space research : the official journal of the Committee on Space Research.

[62]  J. Puget,et al.  A New Component of the Interstellar Matter: Small Grains and Large Aromatic Molecules , 1989 .

[63]  A. Marchand,et al.  Caracterisation de materiaux carbones par microspectrometrie Raman , 1984 .

[64]  M. S. Dresselhaus,et al.  Model for Raman scattering from incompletely graphitized carbons , 1982 .