High-Speed Atomic Force Microscopy

High-speed atomic force microscopy (HS-AFM) has been developed as a nano-dynamics visualization technique. This microscopy permits direct observation of structure dynamics and dynamic processes of biological molecules in physiological solutions, at a subsecond to sub-100 ms temporal resolution and an ∼2 nm lateral and a 0.1 nm vertical resolution. Importantly, tip-sample interactions do not disturb the biomolecules' functions. Various functioning proteins including myosin V walking on an actin filament and bacteriorhodopsin responding to light have been successfully visualized with HS-AFM. In the quest for understanding the functional mechanisms of proteins, inferences no longer have to be made from static snapshots of molecular structures and dynamic behavior of optical markers attached to proteins. High-resolution molecular movies obtained from HS-AFM observations reveal the details of molecules' dynamic behavior in action, without the need for intricate analyses and interpretations. In this review, I first describe the fundamentals behind the achieved high imaging rate and low invasiveness to samples, and then highlight recent imaging studies. Finally, future studies are briefly described.

[1]  K. Takeyasu,et al.  Motion of the Ca 2+ -pump captured , 2011 .

[2]  Toshio Ando,et al.  Single-molecule imaging on living bacterial cell surface by high-speed AFM. , 2012, Journal of molecular biology.

[3]  C. le Grimellec,et al.  Deciphering the Structure, Growth and Assembly of Amyloid-Like Fibrils Using High-Speed Atomic Force Microscopy , 2010, PloS one.

[4]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[5]  Daisuke Maruyama,et al.  A High-Speed Atomic Force Microscope for Studying Biological Macromolecules in Action , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Ricardo Garcia,et al.  Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy , 1996 .

[7]  Akinori Kidera,et al.  Surface of bacteriorhodopsin revealed by high-resolution electron crystallography , 1997, Nature.

[8]  N. Kodera,et al.  Single‐molecule imaging of photodegradation reaction in a chiral helical π‐conjugated polymer chain , 2010 .

[9]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[10]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[11]  J. Gilman,et al.  Nanotechnology , 2001 .

[12]  A. Kaulen,et al.  M-decay in the bacteriorhodopsin photocycle: effect of cooperativity and pH. , 1995, Biophysical chemistry.

[13]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[14]  J. Hsu,et al.  Inverse calculation of the tip?sample interaction force in atomic force microscopy by the conjugate gradient method , 2004 .

[15]  Hiroyuki Noji,et al.  High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase , 2011, Science.

[16]  Daniel J Müller,et al.  Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. , 2008, Nature nanotechnology.

[17]  RosemanAM ChenS FurtakK FentonWA SaibilHR HorwichAL RyeHS GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. , 1999 .

[18]  K. Torimitsu,et al.  Direct Observation of ATP-Induced Conformational Changes in Single P2X4 Receptors , 2009, PLoS biology.

[19]  Wei Xu,et al.  Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators , 2002, Nature.

[20]  Daniel J Müller,et al.  Force probing surfaces of living cells to molecular resolution. , 2009, Nature chemical biology.

[21]  Henning Stahlberg,et al.  Characterization of the motion of membrane proteins using high-speed atomic force microscopy. , 2012, Nature nanotechnology.

[22]  Z. Shao,et al.  Direct visualization of surface charge in aqueous solution. , 1998, Ultramicroscopy.

[23]  I. Dietzel,et al.  Monitoring cell movements and volume changes with pulse‐mode scanning ion conductance microscopy , 2003, Journal of microscopy.

[24]  Masashi Kitazawa,et al.  Batch Fabrication of Sharpened Silicon Nitride Tips , 2003 .

[25]  Toshio Ando,et al.  High-Speed Atomic Force Microscopy for Studying the Dynamic Behavior of Protein Molecules at Work , 2006 .

[26]  Hideki Taguchi,et al.  Single-molecule observation of protein–protein interactions in the chaperonin system , 2001, Nature Biotechnology.

[27]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[28]  P. Boyer,et al.  Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. , 1982, The Journal of biological chemistry.

[29]  Toshio Ando,et al.  Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy , 2012, Nature Protocols.

[30]  Tiina Lehto,et al.  Observing structure, function and assembly of single proteins by AFM. , 2002, Progress in biophysics and molecular biology.

[31]  Niels de Jonge,et al.  Electron microscopy of specimens in liquid. , 2011, Nature nanotechnology.

[32]  George Oster,et al.  Energy transduction in the F1 motor of ATP synthase , 1998, Nature.

[33]  A. Hengstenberg,et al.  Pulse-mode scanning ion conductance microscopy—a method to investigate cultured hippocampal cells , 2002, Journal of Neuroscience Methods.

[34]  R. Kornberg,et al.  Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. , 1991, Biophysical journal.

[35]  R. Kornberg,et al.  Molecular analysis of two-dimensional protein crystallization , 1993 .

[36]  M. Stark,et al.  Fast low-cost phase detection setup for tapping-mode atomic force microscopy , 1999 .

[37]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[38]  I. Reviakine,et al.  Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy , 2000 .

[39]  J. Buchner,et al.  Review: a structural view of the GroE chaperone cycle. , 2001, Journal of structural biology.

[40]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[41]  Z. Tokaji Dimeric-like kinetic cooperativity of the bacteriorhodopsin molecules in purple membranes. , 1993, Biophysical journal.

[42]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[43]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[44]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .

[45]  K. Nishikawa,et al.  Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. , 2006, Journal of molecular biology.

[46]  M. Kessel,et al.  Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. , 1994, Science.

[47]  Toshio Ando,et al.  Active damping of the scanner for high-speed atomic force microscopy , 2005 .

[48]  Pierre Sens,et al.  Experimental evidence for membrane-mediated protein-protein interaction. , 2010, Biophysical journal.

[49]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[50]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[51]  Jane Clarke,et al.  Hidden complexity in the mechanical properties of titin , 2003, Nature.

[52]  Rehana Afrin,et al.  Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy , 2005, Protein science : a publication of the Protein Society.

[53]  Yale E. Goldman,et al.  Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization , 2003, Nature.

[54]  Y. Lyubchenko,et al.  Visual analysis of concerted cleavage by type IIF restriction enzyme SfiI in subsecond time region. , 2011, Biophysical journal.

[55]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[56]  Hiroyuki Fujita,et al.  Highly coupled ATP synthesis by F1-ATPase single molecules , 2005, Nature.

[57]  I. Reviakine,et al.  Streptavidin 2D crystals on supported phospholipid bilayers: Toward constructing anchored phospholipid bilayers , 2001 .

[58]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[59]  Hideki Kandori,et al.  High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. , 2010, Nature nanotechnology.

[60]  A G Leslie,et al.  The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. , 1997, Structure.

[61]  Elmer S. West From the U. S. A. , 1965 .

[62]  Jacqueline A. Cutroni,et al.  Rigid design of fast scanning probe microscopes using finite element analysis. , 2004, Ultramicroscopy.

[63]  K. Yoshikawa,et al.  Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. , 2010, Ultramicroscopy.

[64]  T. Ando,et al.  Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy , 2008, Nanotechnology.

[65]  Bernard Nysten,et al.  Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy , 2003 .

[66]  K. Takeyasu,et al.  Motion of the Ca2+‐pump captured , 2011, The FEBS journal.

[67]  Masami Hagiya,et al.  Robust and photocontrollable DNA capsules using azobenzenes. , 2010, Nano letters.

[68]  Kei Kobayashi,et al.  Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy , 2005 .

[69]  P Rolfe,et al.  Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. , 1998, Biomaterials.

[70]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Clarke,et al.  The origins and consequences of asymmetry in the chaperonin reaction cycle. , 1995, Journal of molecular biology.

[72]  D. Klenerman,et al.  Nanoscale live-cell imaging using hopping probe ion conductance microscopy , 2009, Nature Methods.

[73]  S. Burgess,et al.  Dynein structure and power stroke , 2003, Nature.

[74]  T. Ando,et al.  Dynamic proportional-integral-differential controller for high-speed atomic force microscopy , 2006 .

[75]  Toshio Ando,et al.  Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. , 2009, Journal of structural biology.

[76]  Tomasz Kowalewski,et al.  Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[77]  D. Oesterhelt,et al.  Closing in on bacteriorhodopsin: progress in understanding the molecule. , 1999, Annual review of biophysics and biomolecular structure.

[78]  Eric Lesniewska,et al.  Surface Topography of Membrane Domains , 2022 .

[79]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[80]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[81]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[82]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[83]  P. Selvin,et al.  Adaptability of myosin V studied by simultaneous detection of position and orientation , 2006, The EMBO journal.

[84]  Richard Henderson,et al.  Molecular mechanism of vectorial proton translocation by bacteriorhodopsin , 2000, Nature.

[85]  G. Orphanides,et al.  FACT Facilitates Transcription-Dependent Nucleosome Alteration , 2003, Science.

[86]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[87]  W. Häberle,et al.  Scanning force microscopy studies of the S-layers from Bacillus coagulans E38-66, Bacillus sphaericus CCM2177 and of an antibody binding process. , 1992, Ultramicroscopy.

[88]  T. Ando,et al.  Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. , 1997, Biochemical and biophysical research communications.

[89]  C. Wyman,et al.  Protein-DNA interactions in high speed AFM: single molecule diffusion analysis of human RAD54. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[90]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[91]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase. , 2004, Nature.

[92]  H. Cantow,et al.  Factors Affecting the Height and Phase Images in Tapping Mode Atomic Force Microscopy. Study of Phase-Separated Polymer Blends of Poly(ethene-co-styrene) and Poly(2,6-dimethyl-1,4-phenylene oxide) , 1997 .

[93]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[94]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[95]  T. Ando,et al.  Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. , 2009, Biophysical journal.

[96]  M. Penttilä,et al.  High Speed Atomic Force Microscopy Visualizes Processive Movement of Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose* , 2009, The Journal of Biological Chemistry.

[97]  J. Sellers,et al.  The prepower stroke conformation of myosin V , 2002, The Journal of cell biology.

[98]  T. Ando,et al.  Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[99]  Toshio Ando,et al.  Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. , 2011, Chemical communications.

[100]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[101]  Z. Shao,et al.  Characterization of AC mode scanning ion-conductance microscopy. , 2001, Ultramicroscopy.

[102]  Takeshi Fukuma,et al.  High resonance frequency force microscope scanner using inertia balance support , 2008 .

[103]  P. Vadgama 2 Surface biocompatibility , 2005 .

[104]  Helen R. Saibil,et al.  GroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings , 1999, Cell.

[105]  L. M. Coluccio,et al.  Myosins: A Superfamily of Molecular Motors , 2008 .

[106]  W. Häberle,et al.  In situ investigations of single living cells infected by viruses. , 1992, Ultramicroscopy.

[107]  J. Spudich,et al.  Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction , 2001, Science.

[108]  A. Engel,et al.  Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope , 1999, Journal of microscopy.

[109]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[110]  Daniel J. Muller,et al.  Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding , 2011, Nature.

[111]  C. le Grimellec,et al.  Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. , 2009, Biophysical journal.

[112]  T. Ando,et al.  Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface , 2011, Science.

[113]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase , 2004, Nature.

[114]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[115]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[116]  G. Lorimer Protein folding Folding with a two-stroke motor , 1997, Nature.

[117]  D. Reinberg,et al.  de FACTo Nucleosome Dynamics* , 2006, Journal of Biological Chemistry.

[118]  M. Stark,et al.  Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control , 2004 .

[119]  P. Heszler,et al.  Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope , 2006, Nanotechnology.

[120]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[121]  Toshio Ando,et al.  High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. , 2010, Methods in enzymology.

[122]  Y. Lyubchenko,et al.  Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. , 2009, Biochemistry.

[123]  Harald Fuchs,et al.  Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation , 1998 .

[124]  T. Ando,et al.  Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. , 2011, Biochemistry.

[125]  C M Niemeyer,et al.  High-quality mapping of DNA-protein complexes by dynamic scanning force microscopy. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[126]  Toshio Ando,et al.  Fast phase imaging in liquids using a rapid scan atomic force microscope , 2006 .

[127]  Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements. , 2007, The Review of scientific instruments.

[128]  Paul K. Hansma,et al.  Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers , 1999 .

[129]  Chanmin Su,et al.  Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM , 2008 .

[130]  A. Horovitz,et al.  Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. , 1995, Biochemistry.

[131]  Ing-Shouh Hwang,et al.  Postfitting Control Scheme for Periodic Piezoscanner Driving , 2006 .

[132]  Jan Pieter Abrahams,et al.  The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer , 1997 .

[133]  Yves F Dufrêne,et al.  Chemical force microscopy of single live cells. , 2007, Nano letters.

[134]  T. Ando,et al.  Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy. , 2011, Angewandte Chemie.

[135]  E. Krementsova,et al.  Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. , 2005, Biophysical journal.

[136]  H. Khorana,et al.  Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[137]  A. Gast,et al.  Influence of pH on Two-Dimensional Streptavidin Crystals , 1998 .

[138]  Toshio Ando,et al.  High-speed AFM and nano-visualization of biomolecular processes , 2008, Pflügers Archiv - European Journal of Physiology.

[139]  T. Ando,et al.  High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work , 2005 .

[140]  A. Horwich,et al.  Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL , 1997, Nature.

[141]  Toshio Ando,et al.  (www.interscience.wiley.com) DOI:10.1002/jmr.843 Review , 2022 .

[142]  Toshio Ando,et al.  High-speed atomic force microscopy coming of age , 2012, Nanotechnology.

[143]  H. Handa,et al.  Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor. , 2003, Genes & development.

[144]  Masayuki Endo,et al.  Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. , 2011, Organic & biomolecular chemistry.

[145]  F. Allgöwer,et al.  A new control strategy for high-speed atomic force microscopy , 2003 .

[146]  H. Noji,et al.  Acceleration of the ATP‐binding rate of F1‐ATPase by forcible forward rotation , 2009, FEBS letters.

[147]  Julius Joseph Santillan,et al.  In situ Characterization of Photoresist Dissolution , 2010 .

[148]  T. Ando,et al.  Direct observation of processive movement by individual myosin V molecules. , 2000, Biochemical and biophysical research communications.

[149]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[150]  Masasuke Yoshida,et al.  Axle-Less F1-ATPase Rotates in the Correct Direction , 2008, Science.

[151]  P. Ormos,et al.  Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin , 2000, Nature.

[152]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .