History, present state-of-art and future of incremental ADCs

Integrated sensor interface circuits require power-efficient high-accuracy data converters. Incremental A/D converters (IADCs) are often the best choice for these, since they can provide excellent energy efficiency, and are easily multiplexed, need only simple digital filtering, and allow low latency. By performing the conversion in multiple steps, the hardware can also be multiplexed among all steps. In this paper, the past, present and anticipated future of IADCs are described. The focus is on multi-step converters.

[1]  Kofi A. A. Makinwa,et al.  A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset , 2013, IEEE Journal of Solid-State Circuits.

[2]  Gabor C. Temes,et al.  A 11μW 250 Hz BW two-step incremental ADC with 100 dB DR and 91 dB SNDR for integrated sensor interfaces , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[3]  R. Plassche A sigma-delta modulator as an A/D converter , 1978 .

[4]  Gabor C. Temes,et al.  A 16-bit 1KHz bandwidth micro-power multi-step incremental ADC for multi-channel sensor interface , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[5]  Gabor C. Temes,et al.  A 35µW 96.8dB SNDR 1 kHz BW multi-step incremental ADC using multi-slope extended counting with a single integrator , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[6]  Gabor C. Temes,et al.  Multi-step incremental ADC with extended binary counting , 2016 .

[7]  Gabor C. Temes,et al.  A Micro-Power Two-Step Incremental Analog-to-Digital Converter , 2015, IEEE Journal of Solid-State Circuits.

[8]  Abbas El Gamal,et al.  CMOS Image Sensor With Per-Column ΣΔ ADC and Programmable Compressed Sensing , 2013, IEEE Journal of Solid-State Circuits.

[9]  Gabor C. Temes,et al.  Incremental Analog-to-Digital Converters for High-Resolution Energy-Efficient Sensor Interfaces , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[10]  Jae-Hong Kim,et al.  A 14b extended counting ADC implemented in a 24Mpixel APS-C CMOS image sensor , 2012, 2012 IEEE International Solid-State Circuits Conference.

[11]  P.B. Griffin,et al.  A High-Resolution Low-Power Oversampling ADC with Extended-Range for Bio-Sensor Arrays , 2007, 2007 IEEE Symposium on VLSI Circuits.

[12]  G.C. Temes,et al.  A low-power 22-bit incremental ADC , 2006, IEEE Journal of Solid-State Circuits.

[13]  P. Rombouts,et al.  A double-sampling extended-counting ADC , 2004, IEEE Journal of Solid-State Circuits.

[14]  Gabor C. Temes,et al.  A 12-bit 7 µW/channel 1 kHz/channel incremental ADC for biosensor interface circuits , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[15]  Gabor C. Temes,et al.  A 16-bit low-voltage CMOS A/D converter , 1987 .

[16]  Gabor C. Temes,et al.  Two-step incremental analogue-to-digital converter , 2013 .

[17]  James D. Plummer,et al.  A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.

[18]  Gabor C. Temes,et al.  Two-step multi-stage incremental ADC , 2015 .