Higher-order total variation bounds for expectations of periodic functions and simple integer recourse approximations

We derive bounds on the expectation of a class of periodic functions using the total variations of higher-order derivatives of the underlying probability density function. These bounds are a strict improvement over those of Romeijnders et al. (Math Program 157:3–46, 2016b), and we use them to derive error bounds for convex approximations of simple integer recourse models. In fact, we obtain a hierarchy of error bounds that become tighter if the total variations of additional higher-order derivatives are taken into account. Moreover, each error bound decreases if these total variations become smaller. The improved bounds may be used to derive tighter error bounds for convex approximations of more general recourse models involving integer decision variables.

[1]  Minjiao Zhang,et al.  Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs , 2014, SIAM J. Optim..

[2]  Hans-Jürgen Zimmermann,et al.  On stochastic integer programming , 1975, Z. Oper. Research.

[3]  N. Hermes,et al.  Financial liberalization and capital flight : evidence from the African continent , 2014 .

[4]  The effect of industry structure and yardstick design on strategic behavior with yardstick competition , 2013 .

[5]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[6]  William T. Ziemba,et al.  Applications of Stochastic Programming (MPS-SIAM Series in Optimization) , 2005 .

[7]  Leen Stougie,et al.  Simple integer recourse models: convexity and convex approximations , 2006, Math. Program..

[8]  David P. Morton,et al.  Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models , 2017, INFORMS J. Comput..

[9]  Maarten H. van der Vlerk,et al.  Total variation bounds on the expectation of periodic functions with applications to recourse approximations , 2016, Math. Program..

[10]  Julia L. Higle,et al.  The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification , 2005, Math. Program..

[11]  William T. Ziemba,et al.  Stochastic Programming:Applications in Finance, Energy, Planning and Logistics , 2013 .

[12]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[13]  Maarten H. van der Vlerk,et al.  Convex Approximations for Totally Unimodular Integer Recourse Models: A Uniform Error Bound , 2015, SIAM J. Optim..

[14]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[15]  Leen Stougie,et al.  Approximation in two-stage stochastic integer programming , 2014 .

[16]  Wei Han,et al.  Alternative weighting structures for multidimensional poverty assessment , 2013, The Journal of Economic Inequality.

[17]  Dinakar Gade,et al.  Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs , 2012, Mathematical Programming.

[18]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[19]  Lewis Ntaimo,et al.  Fenchel decomposition for stochastic mixed-integer programming , 2013, J. Glob. Optim..

[20]  M. Mulder,et al.  Exploring interaction effects of climate policies: A model analysis of the power market , 2018, Resource and Energy Economics.

[21]  Maarten Hendrikus van der Vlerk Stochastic programming with integer recourse , 1995 .

[22]  Rüdiger Schultz,et al.  A Convex Approximation for Two-Stage Mixed-Integer Recourse Models with a Uniform Error Bound , 2016, SIAM J. Optim..

[23]  Takayuki Shiina,et al.  Stochastic Programming with Integer Variables , 2007, CSC.

[24]  J. Zolésio,et al.  Springer series in Computational Mathematics , 1992 .

[25]  Maarten H. van der Vlerk,et al.  Convex approximations for complete integer recourse models , 2004, Math. Program..

[26]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[27]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .

[28]  Leen Stougie,et al.  Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis , 1995, Math. Program..

[29]  D. Bezemer,et al.  How the credit cycle affects growth: the role of bank balance sheets , 2014 .

[30]  Ruud H. Teunter,et al.  Opportunistic condition-based maintenance and aperiodic inspections for the two-unit series system , 2014 .

[31]  Informationstechnik Berlin,et al.  Dual Decomposition in Stochastic Integer Programming , 1996 .

[32]  Do healthcare financing privatisations curb total healthcare expenditures , 2015 .

[33]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[34]  M. Allers,et al.  The effects of local government amalgamation on public spending and service levels , 2014 .