Characteristics of optical guided modes in lossy waveguides.

A number of analysis techniques aimed at determining the characteristics of optical guided waves propagating in lossy structures are examined. The exact theory is used as a guide to assess the validity of several approximate methods based on two basic approaches: (a) geometrical optics and (b) perturbation calculations. The limitations of the conventional perturbation techniques are specified. We present a generalized procedure that permits an accurate description of metal boundaries at optical frequencies. In this case, TM modes differ from their TE counterparts by a field buildup near conducting walls and by the existence of an additional surface plasma mode. The dependence of attenuation coefficients on film thickness and mode order are discussed. The use of low-index dielectric buffers to reduce ohmic losses is considered. It is found that, with increasing buffer thickness, TM(N) modes undergo a continuous transformation to become TM(N+1).