Flows of viscoelastic fluids treated by the method of characteristics

Abstract Some numerical results for fluids of the John son-Segalman type, obtained with a transient finite element algorithm basedon splitting techniques (decoupled approach) are presented. The first time sub-step deals with the dynamical part and incompressibility and the second, with the constitutive equation. In both, the method of characteristics is used. Validating numerical experiments involve the entry length and 4:1 contraction problems, for co-rotational and co-deformational fluids.

[1]  On the numerical errors in one step algorithms for time dependent problems , 1982 .

[2]  J. Saut,et al.  Change of type and loss of evolution in the flow of viscoelastic fluids , 1986 .

[3]  Jung Yul Yoo,et al.  Hyperbolicity and change of type in the flow of viscoelastic fluids through channels , 1985 .

[4]  P. Tanguy,et al.  A finite element procedure coupled with the method of characteristics for simulation of viscoelastic fluid flow , 1990 .

[5]  R. Keunings,et al.  Finite-element Analysis of Die Swell of a Highly Elastic Fluid , 1982 .

[7]  John D. Wang,et al.  Finite Element Characteristic Advection Model , 1988 .

[8]  M. Crochet,et al.  A new mixed finite element for calculating viscoelastic flow , 1987 .

[9]  Norio Takeuchi,et al.  Mixed finite element method for analysis of viscoelastic fluid flow , 1977 .

[10]  R. Keunings,et al.  FURTHER RESULTS ON THE FLOW OF A MAXWELL FLUID THROUGH AN ABRUPT CONTRACTION , 1988 .

[11]  A. Beris,et al.  Finite element calculation of viscoelastic flow in a journal bearing: I. small eccentricities , 1984 .

[12]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[13]  Optimal control techniques for computing stationary flows of viscoelastic fluids , 1985 .

[14]  Marcel Crochet,et al.  Hermitian Finite-elements for Calculating Viscoelastic Flow , 1986 .

[15]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[16]  A. Bermúdez,et al.  La méthode des caractéristiques pour les problèmes de convection-diffusion stationnaires , 1987 .

[17]  Robert C. Armstrong,et al.  Multiple solutions in the calculation of axisymmetric contraction flow of an upper convected maxwell fluid , 1984 .

[18]  Xiaolin Luo,et al.  A decoupled finite element streamline-upwind scheme for viscoelastic flow problems , 1989 .

[19]  D. Joseph,et al.  Hyperbolicity and change of type in sink flow , 1985, Journal of Fluid Mechanics.

[20]  Roland Keunings,et al.  An algorithm for the simulation of transient viscoelastic flows with free surfaces , 1986 .

[21]  R. Keunings On the high weissenberg number problem , 1986 .

[22]  M. Luskin On the classification of some model equations for viscoelasticity , 1984 .

[23]  Xiaolin Luo,et al.  A streamline element scheme for solving viscoelastic flow problems. Part I. Differential constitutive equations , 1986 .

[24]  J. Song,et al.  Numerical simulation of viscoelastic flow through a sudden contraction using a type dependent difference method , 1987 .

[25]  Michel Fortin,et al.  A finite element procedure for viscoelastic flows , 1987 .

[26]  Marcel Crochet,et al.  Numerical Methods in Non-Newtonian Fluid Mechanics , 1983 .

[27]  Dominique Pelletier,et al.  Are fem solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!) , 1989 .

[28]  M. Crochet,et al.  On the consequence of discretization errors in the numerical calculation of viscoelastic flow , 1985 .

[29]  M. Crochet,et al.  Further Results On the Flow of a Viscoelastic Fluid Through An Abrupt Contraction , 1986 .

[30]  Endre Süli,et al.  Stability of the Lagrange-Galerkin method with non-exact integration , 1988 .

[31]  Inflow Boundary Conditions for Steady Flows of Viscoelastic Fluids with Differential Constitutive Laws. , 1986 .

[32]  J. Saut,et al.  Hyperbolicity and change of type in the flow of viscoelastic fluids. Technical summary report , 1984 .

[33]  J. Marchal,et al.  Loss of evolution in the flow of viscoelastic fluids , 1986 .

[34]  M.A. Hulsen,et al.  Mathematical and physical requirements for successful computations with viscoelastic fluid models , 1988 .

[35]  Robert C. Armstrong,et al.  Approximation error in finite element calculation of viscoelastic fluid flows , 1982 .

[36]  David S. Malkus,et al.  Dynamics of shear flow of a non-Newtonian fluid , 1990 .

[37]  Marcel Crochet,et al.  Numerical-simulation of Viscoelastic Flow - a Review , 1989 .

[38]  M. Fortin,et al.  A new approach for the FEM simulation of viscoelastic flows , 1989 .

[39]  R. Keunings,et al.  On Numerical Die Swell Calculation , 1982 .