Deterministic Numerical Schemes for the Boltzmann Equation
暂无分享,去创建一个
[1] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[2] Chi-Wang Shu,et al. Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces , 2003, J. Sci. Comput..
[3] Lorenzo Pareschi,et al. Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..
[4] Helmut Neunzert,et al. On simulation methods for the Boltzmann equation , 1987 .
[5] T. Ohwada. Higher Order Approximation Methods for the Boltzmann Equation , 1998 .
[6] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[7] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[8] Alexander J. Wagner,et al. A Practical Introduction to the Lattice Boltzmann Method , 2008 .
[9] Kenichi Nanbu,et al. Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .
[10] Sergej Rjasanow,et al. Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.
[11] A. Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .
[12] E. Fijalkow,et al. A numerical solution to the Vlasov equation , 1999 .
[13] Lorenzo Pareschi,et al. Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..
[14] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[15] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[16] X. He,et al. Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.
[17] E. Hairer. Order conditions for numerical methods for partitioned ordinary differential equations , 1981 .
[18] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[19] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[20] T. Yabe,et al. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .
[21] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .
[22] Thor Gjesdal. Implicit--explicit methods based on strong stability preserving multistep time discretizations , 2003 .
[23] Alexander J. Klimas,et al. A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions , 1987 .
[24] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[25] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[26] Francis Filbet,et al. High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .
[27] S. Rjasanow,et al. Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .
[28] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[29] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[30] G. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .
[31] E. Hofer,et al. A Partially Implicit Method for Large Stiff Systems of ODEs with Only Few Equations Introducing Small Time-Constants , 1976 .
[32] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[33] José A. Carrillo,et al. Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..
[34] Rüdiger Weiner,et al. The positivity of low-order explicit Runge-Kutta schemes applied in splitting methods , 2003 .
[35] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[36] Lorenzo Pareschi,et al. Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..