Deterministic Numerical Schemes for the Boltzmann Equation

This article describes methods for the deterministic simulation of the collisional Boltzmann equation. It presumes that the transport and collision parts of the equation are to be simulated separately in the time domain. Time stepping schemes to achieve the splitting as well as numerical methods for each part of the operator are reviewed, with an emphasis on clearly exposing the challenges posed by the equation as well as their resolution by various schemes.

[1]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[2]  Chi-Wang Shu,et al.  Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces , 2003, J. Sci. Comput..

[3]  Lorenzo Pareschi,et al.  Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..

[4]  Helmut Neunzert,et al.  On simulation methods for the Boltzmann equation , 1987 .

[5]  T. Ohwada Higher Order Approximation Methods for the Boltzmann Equation , 1998 .

[6]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[7]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[8]  Alexander J. Wagner,et al.  A Practical Introduction to the Lattice Boltzmann Method , 2008 .

[9]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .

[10]  Sergej Rjasanow,et al.  Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.

[11]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[12]  E. Fijalkow,et al.  A numerical solution to the Vlasov equation , 1999 .

[13]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[14]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[15]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[16]  X. He,et al.  Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.

[17]  E. Hairer Order conditions for numerical methods for partitioned ordinary differential equations , 1981 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[20]  T. Yabe,et al.  Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .

[21]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[22]  Thor Gjesdal Implicit--explicit methods based on strong stability preserving multistep time discretizations , 2003 .

[23]  Alexander J. Klimas,et al.  A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions , 1987 .

[24]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[25]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[26]  Francis Filbet,et al.  High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .

[27]  S. Rjasanow,et al.  Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .

[28]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[29]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[30]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[31]  E. Hofer,et al.  A Partially Implicit Method for Large Stiff Systems of ODEs with Only Few Equations Introducing Small Time-Constants , 1976 .

[32]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[33]  José A. Carrillo,et al.  Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..

[34]  Rüdiger Weiner,et al.  The positivity of low-order explicit Runge-Kutta schemes applied in splitting methods , 2003 .

[35]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[36]  Lorenzo Pareschi,et al.  Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..